生活中的优化问题举例.ppt
《生活中的优化问题举例.ppt》由会员分享,可在线阅读,更多相关《生活中的优化问题举例.ppt(27页珍藏版)》请在三一办公上搜索。
1、1.4生活中的优化问题举例,生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,通过前面的学习,知道,导数是求函数最大(小)值的有力工具,本节我们运用导数,解决一些生活中的优化问题。,例1:海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图3.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm,如何设计海报的尺寸,才能使四周空白面积最小?,图3.4-1,因此,x=16是函数S(x)的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。,解法二:由解法(一)
2、得,问题2:饮料瓶大小对饮料公司利润有影响吗?,你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?你想从数学上知道它的道理吗?是不是饮料瓶越大,饮料公司的利润越大?,例2:饮料瓶大小对饮料公司利润的影响 下面是某品牌饮料的三种规格不同的产品,若它们的价格如下表所示,则(1)对消费者而言,选择哪一种更合算呢?(2)对制造商而言,哪一种的利润更大?,例2 某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,()瓶子半径多大时,能使每瓶饮料的 利润最大?(
3、)瓶子半径多大时,每瓶饮料的利润最小?,-,+,减函数,增函数,-1.07p,每瓶饮料的利润:,解:由于瓶子的半径为r,所以每瓶饮料的利润是,当半径r时,f(r)0它表示 f(r)单调递增,即半径越大,利润越高;当半径r时,f(r)0 它表示 f(r)单调递减,即半径越大,利润越低,1.半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值,半径为cm时,利润最大,-,+,减函数,增函数,-1.07p,1、当半径为2cm时,利润最小,这时f(2)0,2、当半径为6cm时,利润最大。,从图中可以看出:,从图中,你还能看出什么吗?,由上述例子,我们不难发现,解决优化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生活 中的 优化 问题 举例
链接地址:https://www.31ppt.com/p-5795580.html