现代电力电子技术基础.ppt
《现代电力电子技术基础.ppt》由会员分享,可在线阅读,更多相关《现代电力电子技术基础.ppt(387页珍藏版)》请在三一办公上搜索。
1、1,现代电力电子技术 Modern Power Electronics Technology,大连理工大学 李国锋2011年8月,2,目录,第1章 概述第2章电力电子器件第3章 AC-DC变换第4章 DC-DC变换第5章 DC-AC变换第6章 AC-AC变换第7章 PWM控制技术 第8章几种应用设计,3,第一章 电力电子技术综述,引言1.1 简单的变换器1.2理想开关和实际开关1.3变换器分类1.4 变换器组成1.5变换器中电感电容连接1.6 变换器的希望特性和考核指标1.7 变换器保护,4,电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装
2、置的综合性学科,包括电压、电流、频率和波形变换,涉及电子学、自动控制原理和计算机技术等学科。电力电子技术与信息电子技术的主要不同就是效率问题,对于信息处理电路来说,效率大于15%就可以接受,而对于电力电子技术而言,大功率装置效率低于85%还是无法忍受。目前能源问题已是我国面临的主要问题之一,提高电源变换效率是电力电子工程师主要任务。随着电子技术的不断发展,新器件不断出现,电力电子技术的发展方向是高频、高效、高功率密度和智能化,最终使人们进入电能变换和频率变换更加自由的时代,并充分发挥其节能、降耗和提高装置工作性能的作用。功率半导体器件是现代电力电子技术(Modern Power Electro
3、nics)的基础,它的应用范围非常广阔,从毫瓦级的个人无线通信设备,到百万千瓦的高压直流输电(High Voltage DC Transmission)系统。,引言,5,电力电子技术的应用领域主要有:大功率直流电源。它的发展主要以提高单机容量和增加效率为主要目标。电机控制。无论是交流电机还是直流电机均采用电力电子技术来完成电机的速度、转矩、跟随性等控制,但目前更多的是研究直流调速不能涉及的应用领域。高压直流输电。电源变换。它的发展主要以增加效率和提高控制性能为主要目标,如电焊机、电磁感应加热、电动机车、电动汽车,电镀电源、电冰箱、洗衣机等控制。无功功率补偿。,6,1.1 简单的变换器,如果您需
4、要从12V获得一个直流电源3.3V,可能想到采用分压器实现,如图1-1a所示。若R=1K,可以算出R2=0.379K,运用电工学中所学的知识,可得到所设计的电源等效内阻为:等效电路如图(b)所示,输出特性显然这个电源在没有电流输出时,其输出电压为3.3V;有电流输出时,其输出电压为 IO为输出电流或负载电流。,i,Vo,3.3V,1-1分压器、电压跟随器及输出特性,o,7,可以看出,随着电流增加输出电压线性下降,当输出电流为12mA时,所设计的电源输出电压为零。也就是说,这个电源对负载变化没有调节能力。理想电压源输出电压不会随输出电流增大而下降,也就是说输出电压对负载变化应该具有100%的调节
5、性能,从电路角度看,即电源等效内阻为零。,8,从效率方面看 这个电路当输出电流为零时,电路损耗,这些能量通过电阻转化为热。当输出电流为5mA时,此时输出电压 输出功率。电压跟随器电路 显然其输出电压较分压器稳定的多,电路中除了电阻损耗外,另附加了晶体管损耗:在大功率应用中,大量的能量损耗在晶体管上,这些热量必须通过散热器散掉,其效率也很低。,9,通过上述分析,可以看出变换器设计必须考虑至少两个方面问题:输出参数(电压)的稳定问题;变换效率问题;效率很低的变换电路几乎没有应用价值。,10,周期性的导通和截止直流电源,形成了方波电压,方波电压通过滤波后得到直流电压,在周期恒定时,控制导通时间就可控
6、制输出电压,如图1-2所示。假定开关是理想开关,则损耗为零,效率大大增加,这就是现代电力电子技术中采用的开关工作模式。现代电力电子技术中的所有半导体器件都工作于饱和导通和截止两种工作状态,极力避免工作于放大状态,这也是和信号电路的又一本质区别。,图1-2 PWM原理,11,1.2理想开关和实际开关,一般认为满足如下条件就是理想开关:开关处于关断状态时能够承受高的端电压,并且漏电流为零;开关处于导通状态时能够流过大电流,并且此时端电压(导通电压)为零;导通、关断切换时所需的开关时间为零;即使反复地开关也不老化。小信号也能导通、关断,对信号延迟时间为零。,12,电力半导体器件不是理想器件,实际开关
7、特性关断时能承受的端电压是有限的,关断时的阻抗也不是无穷大,总有漏电流流过,产生关断损耗。导通时能够流过的电流是有限的,导通时阻抗也不为零,正向导通电压和电流的乘积产生导通损耗。从关断到导通以及从导通到关断的时间也不是零,这时的电压和电流乘积产生开关损耗。由于端电压有限,所以在需要耐高压时,需要将电力半导体器件串联;同时由于流过的最大电流有限,在需要流过大电流时,需要将电力半导体器件并联。,13,需要指出的是,采用理想开关并不是可以解决一切问题,如果出现了理想开关,也是只解决了损耗问题,与此同时会面临新的问题:如由于理想开关在零时间内完成开通和关断,即零时间强制切换大电流,di/dt将非常大,
8、由于分布电感,会产生大的过压,因此抑制这个过压的安装技术改善是非常重要。,14,1.3变换器分类,图1-3 变换器分类,15,图1-3为一个单输入单输出变换器,电源可以是直流,也可以是交流,可以是电压源,也可以是电流源;负载可以是电感、电容或电阻,也可以是有源负载或者是把电能转化成其它能量形式的装置;Vc是具有输出变量特征的控制信号,输入和输出侧的电压或电流波形可以单相,也可以是三相或多相形式,变换器由开关、电感、电容和变压器组成,开关包含两端开关(如二极管)和三端开关(如SCR)。为了方便分析,假定这些器件都是理想器件,即具有线性、非时变特征,开关的电压和电流容量满足要求。,16,1 DC-
9、AC变换器逆变器 将直流电源变换成一个交流电源(单相或多相)称之为逆变,这种装置称为逆变器(Inverter)。,17,基本电路如图1-4(a)所示,通过采用一个开关把直流电源变换成低频或高频交流源,输出波形为脉动直流波形,输出波形经过滤波电路整形成希望的波形,一般希望输出为正弦波形。三相输出通过采用三个开关完成,如图1-4(b)所示。三个开关轮流导通120度,输出三相120度直流脉动波形。交流电的频率、幅度大小和相位是交流电的三要素,使用电力电子技术如何自由地变换三要素,是DC-AC变换技术研究的主要内容。DC-AC变换器应用范围很广,如飞机和空间站电源、UPS、闪光灯充电、太阳能发电、交流
10、电机调速、变速恒频电源和感应加热电源等,它们输出交流频率从50Hz到1MHz不等。,18,2 AC-DC变换器整流器 将单相或多相交流电源变换成一个直流电源称之为整流,这种装置成为整流器(Rectifier)。,19,基本电路如图1-5(a)(b)所示。图1-5(a)中交流电源通过二极管整流,二极管阳极承受正电压时导通,承受负电压时截止,因此称二极管为不受控或极性控制开关。二极管后的波形包含交流成分和直流成分,交流成分称之为纹波,因此在二极管之后需要滤波电路。图1-5(b)中用开关取代了二极管,其主要特点是可以在输入交流波形的任何时刻进行开关,而不是和二极管那样阳极正电压时导通负电压时截止。因
11、此可以控制输出电压的交流分量和直流分量,滤波电路仍然需要。AC-DC变换器应用范围很广,典型如电池充电,直流电机驱动,高压直流输电,风力发电等。,20,3 DC-DC变换器 将直流电源变换成一路或多路直流电源称之为DC-DC变换。DC-DC变换器也可以由DC-AC变换器和AC-DC变换器串联取得,输入直流电压首先逆变为高频率的AC,接着把AC通过整流变换成DC。在DC-DC变换器中,频率提高可以减轻体积重量,如果需要输入和输出隔离,频率提高也可以减小变压器的重量,同时提高输入和输出电压的变化范围。,21,4 AC-AC变换器 将一个交流电源(单相或多相)变换成另一个交流电源(单相或多相,同频率
12、或不同频率)称之为AC-AC变换。输出频率低于输入电压频率的AC-AC变换器称之为周波变换器(Cyclo-convweter),其输出频率一般是输入电源频率的几分之一。电源频率和输出频率相同的AC-AC变换器称之为交流控制器。另一种AC-AC变换器由ac-dc变换器和dc-ac变换器串联而成,从而得到希望的输出电压幅度、频率和相数。这样的AC-AC变换器称之为DC-Link ac-ac变换器,这种变换器输出频率与输入电源频率无关。,22,23,5 软开关与硬开关 提高变换器工作频率可以减小变换器体积,但增加工作频率会大大增加变换器损耗,降低变换器效率,为了同时提高变换器效率和减小变换器体积,软
13、开关技术应运而生。所谓软开关技术,是指电力电子器件导通或关断时损耗为零的技术,与此相应若导通或关断时损耗不为零则为硬开关。,24,现代电力电子装置的发展趋势小型化、轻量化、对效率和电磁兼容性也有更高的要求。电力电子装置高频化滤波器、变压器体积和重量减小,电力电子装置小型化、轻量化。开关损耗增加,电磁干扰增大。软开关技术降低开关损耗和开关噪声。进一步提高开关频率。,25,硬开关:,开关过程中电压和电流均不为零,出现了重叠。电压、电流变化很快,波形出现明显得过冲,导致开关噪声。,硬开关的开关过程,26,软开关:,在原电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。
14、降低开关损耗和开关噪声。,软开关的开关过程,27,零电压开通开关开通前其两端电压为零开通时不会产生损耗和噪声。零电流关断开关关断前其电流为零关断时不会产生损耗和噪声。零电压关断与开关并联的电容能延缓开关关断后电压上升的速率,从而降低关断损耗。零电流开通与开关串联的电感能延缓开关开通后电流上升的速率,降低了开通损耗。,当不指出是开通或是关断,仅称零电压开关和零电流开关。靠电路中的谐振来实现。,28,1.4 变换器组成,29,1、电感 电感是储能器件,除了作为一个器件存在于变换器中,同时还有寄生电感,如负载的寄生电感,配电系统中导线的自感,变压器和电机的漏感。电感的电压电流关系为:在 时间内,流过
15、一个大电感的电流可以认为是常数,这是因为:因此,可以认为在 时间内,大电感的模型可用电流源代替。,30,2、电容 电容也是一个储能器件,在变换器中作为一个器件存在,同时还存在寄生电容,如变压器中的匝间电容和层间电容,二极管、晶体管、晶闸管等内部的固有电容。电容的电压电流关系为:当以恒定电流充电时,可写为 即恒流源向电容充电时,电容两端电压线性增加。在 时间内,大电容的电压可以认为是常数:因此,可以认为在dt 时间内,大电容的模型可以用电压源代替。,31,3、电源 变换器的能量由输入电源提供,电源可以有多种划分方法,如:电压源,电流源;直流电源,交流电源;总是提供恒定幅度电压的电源称为直流电压源
16、(dc voltage source)。基于交流电源的相数多少,交流电源可进一步划分为:单相交流源,三相交流源,多相交流源。,32,电压源和电流源,如图1-8所示。电压源端电压是流过其电流的函数:一般情况下电流流出正端子,但有时电流反向流动,因此,端电压在幅度和波形上与电源内部电压不同。理想电压源的源阻抗为零,因此其端电压和电流无关。电流源流出的电流与其端电压有关:端电压或正或负,端电流在幅度和波形上与电源内部电流不同。理想电流源的源阻抗无穷大,因此流出其端子的电流与端电压无关。,图1-8 电压源和电流源,33,5、电力电子器件电力电子器件在功率电路中(主电路)起着开关作用。理想开关就是:当开
17、关导通、流过电流时,其端电压为零;当开关关断、流过电流为零。就是说理想开关损耗为零,即通态损耗为零、断态损耗为零和开关损耗为零。双向开关(bidirectional switch),就是开关在通态时电流可以双向流动,如闸刀。电力电子器件中无双向开关,但可以用两个单向开关反并联组成。双极性开关(bipolar switch),就是开关在断态时既可以承受正向电压也可以承受反向电压,如闸刀、可控硅(Silicon Controlled Rectifier:SCR)。单向(unidirectional)单极性(unipolar)开关,几乎所有的电力半导体器件均为单向单极性开关,如二极管、晶体管等。开关
18、控制信号可能是一个门槛电压或电流,超过这个门槛就导通,也可能是一个电压或电流的脉冲信号。,34,晶闸管时代(1957年开始),晶闸管 SCR(Silicon Controlled Rectifier)可通过门极控制开通,但通过门极不能控制关断,属于半控型器件。晶闸管因其电气性能和控制性能优越,很快取代了水银整流器和旋转变流机组,应用范围也迅速扩大。电化学工业、铁道电气机车、钢铁工业(轧钢用电气传动、感应加热等)、电力工业(直流输电、无功补偿等)的迅速发展也有力地推动了晶闸管的进步。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。对晶闸管电路的控制方式主要是相位控制方式。晶
19、闸管的关断通常依靠电网电压等外部条件来实现。目前由于其能承受的电压、电流容量仍是目前器件中最高的,而且工作可靠,所以许多大容量场合仍大量使用SCR。,35,全控型器件时代(70年代后期),GTO 可关断晶闸管以 BJT(GTR)电力双极型晶体管 为代表:Power-MOSFET 电力场效应管这些器件可以通过门极(或栅极、基极)控制开通和关断。同时,这些器件可以达到的开关频率均较高。这些器件大大推进了电力电子技术的发展。和SCR电路的相位控制方式相对应,全控型器件电路常使用脉冲宽度调制(PWM Pulse Width Modulation)方式进行控制。,36,复合型器件(80年代后期),以绝缘
20、栅极双极型晶体管(Insulated Gate Bipolar TransistorIGBT)为代表,IGBT是电力场效应管(MOSFET)和双极结型晶体管(Bipolar Junction TransistorBJT)的复合。它集MOSFET的驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点于一身,性能十分优越,使之成为现代电力电子技术的主导器件。与IGBT相对应,MOS控制晶闸管(MOS Controlled TransistorMCT)和集成门极换流晶闸管(Intelligent Gate-Commutated ThyristorIGCT)等都是MOSFET和GTO的复合
21、,它们也综合了MOSFET和GTO两种器件的优点。,37,功率模块(Power Module):为了使电力电子装置的结构紧凑、体积减小,常常把若干个电力电子器件及必要的辅助元件 做成模块的形式,这给应用带来了很大的方便。功率集成电路(Power Integrated CircuitPIC):把驱动、控制、保护电路和功率器件集成在一起,构成功率集成电路(PIC)。目前其功率都还较小,但代 表了电力电子技术发展的一个重要方向。智能功率模块(Intelligent Power ModuleIPM)则专指IGBT及其辅助器件与其保护和驱动电路的单片集成,也称智能IGBT(Intelligent IGB
22、T)。,高压集成电路(High Voltage Integrated CircuitHVIC):一般指横向高压器件与逻辑或模拟控制电路的单片集成。智能功率集成电路(Smart Power Integrated CircuitSPIC):一般指纵向功率器件与逻辑或模拟控制电路的单片集成。,38,6、变压器变压器在变换器中是通过磁耦合把电能从一个电路传输到另外其它电路中去,同时改变了电路电压,但传输过程中电压或电流波形的频率不会改变,当然直流电压不能通过变压器传输,能量守恒定律适用于变压器。变压器由磁芯、骨架和绕组组成,磁芯构成闭合磁路,绕组至少两个以上,分别称为原边绕组和副边绕组或初级和次级绕组
23、。两个绕组的变压器如图1-10所示,绕组线圈上的点表示电压极性相同,称为同名端。由于闭合磁路中磁通 相等,线圈电压、匝数和磁通关系式为:由能量守恒定律,变压器输入能量等于输出能量:,39,7、负载负载可以分为:阻性负载;其模型可用纯电阻代替,纯电阻负载的变换器一般在低频工作,如加热器、电炉、烤箱等。感性负载;主要由电感组成。容性负载;如电容、激光、显示器等。直流电流负载;如恒转距应用的直流电机。直流电压负载;如恒转速应用的直流电机、电池充电过程。交流电压负载;如恒转速应用的感应同步电机。交流电流负载;如恒转距应用的感应同步电机。,40,8、控制器目前的控制器主要有两大类,专用芯片和微型计算机。
24、所谓专用芯片也称为适合特定用途的IC,目前有许多公司相继开发出了应用于不同用途的控制芯片,专用芯片的特点是控制简单容易,控制规律采用硬件实现。目前控制系统中常用的微控制器有单片机和DSP等。,41,1、变换器中电感连接电感电流的突然变化会引起,从而导致电感两端产生很高的电压,也影响到电路中相关的元件。但反过来,电感两端加上一个有限的电压却不能引起电感中电流的瞬间跳变,即电感中电流是连续的。因此,在电力电子变换器中,电感和单向开关不能串接在一起,万一需要这种连接,开关断开时,必须提供电感电流连续的通道。开关两端反并联一个二极管可以为串连的电感提供一个电流通道,电感反并联一个二极管也可为电感提供电
25、流通道,这个二极管称之为续流二极管(free-wheeling diode)。,1.5变换器中电感电容连接,42,如果周期性的激励包含电感的电路,则在稳态时(steady-state condition)一个周期内电感两端的平均电压为零。这是因为如果电感两端的平均电压非零,那么电感电流将增大到无穷大,所以:稳态时,周期结束时的电感电流与周期开始时的电感电流相等。因为:所以:,43,2、变换器中电容连接电容两端电压的突然变化,会引起无穷大的,从而导致非常大的电流流进或流出电容,但反过来,非常大的电流流进或流出电容,却不会引起电容电压的瞬间跳变,即电容两端的电压是连续的。因此,在电力电子变换器中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 电力 电子技术 基础

链接地址:https://www.31ppt.com/p-5790747.html