《正方形的性质与判定.ppt》由会员分享,可在线阅读,更多相关《正方形的性质与判定.ppt(22页珍藏版)》请在三一办公上搜索。
1、第一章 特殊平行四边形,第3节 正方形的性质与判定(一),想一想,你觉得什么样的四边形是正方形呢?,矩 形,正方形,矩形怎样变化后就成了正方形呢?,探究(一),有一组邻边相等,菱形怎样变化后就成了正方形呢?,正方形,1、要使一个菱形成为正方形需 增加的条件是,(填上一个条件即可),有一个角是直角,探究小结,矩 形,正方形,邻边,相等,发现:一组邻边相等的矩形 叫正方形,一个角,是直角,正方形,发现:一个角为直角的菱形叫正方形,正方形定义,有一组邻边相等并且有一个角是直角的平行四边形是正方形,拓展讨论,讨论总结:正方形有那些性质?,知识点一:,正方形的性质,A,C,D,B,A,C,D,B,A,C
2、,D,B,O,对边平行,四条边都相等,四 个 角 都是直角,对角线互相垂直平分且相等,每条对角线平分一组对角,四边形ABCD是正方形ABCD ADBC,AB=BC=CD=AD,四边形ABCD是正方形A=B=C=D=90,四边形ABCD是正方形ACBD,AC=BD,OA=OB=OC=OD,轴对称图形 中心对称图形,于是我们得到了正方形的两条定理:定理 正方形的四个角都是直角,四条边都相等定理正方形的对角线相等且互相垂直平分,想一想:正方形有几条对称轴,解析:正方形有4条对称轴.经验层面:可通过折叠.分析层面:正方形具有矩形、菱形的所有性质,所以必然具有矩形过每组对边中点的对称轴和菱形过对角线的对
3、称轴.,二、正方形的性质的应用,例1、如图,正方形ABCD中,(1)一条对角线把它分成 个全等的三 角形。,问:这些三角形是什么三角形?,(2)两条对角线把它分成 个全等的 三角形。,2,4,等腰直角,A,B,D,C,O,(3)对角线AC与正方形的一边所成的角为 度。,45,例2、如图,正方形ABCD中,,正方形的面积为64平方厘米,则正方形对角线AC=。,性质应用,例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.,解:BE=DF,且BEDF.理由如下:,(1)四边形ABCD是正方形.BC=DC,BCE=90
4、(正方形的四条边都相等,四个角都是直角).DCF=180-BCE=180-90=90.BCE=DCF.又CE=CF.BCEDCF.BE=DF.,(2)延长BE交DE于点M,(如图1-19).BCEDCF.CBE=CDF.DCF=90.CDF+F=90.CBE+F=90.BMF=90.BEDF.,例,求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.,A,D,C,B,O,已知:如图,四边形ABCD是正方形,对 角线AC、BD相交于点O.,求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形.,证明:四边形ABCD是正方形,ACBD,即AOB=BOC=COD=DOA=90AO
5、=BO=CO=DO.ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCO CDO DAO(SAS),A,D,C,B,O,正方形对角线把正方形分成多少个等腰直角三角形?,拓展讨论:,结论:分成八个等腰直角三角形,分别是ABC、ADC、ABD、BCD;AOB、BOC、COD、DOA.,平行四边形,矩形,菱形,正方形,正方形、矩形、菱形、平行四边形四者之间有什么关系?,小结,知识拓展:与同学讨论后填写下表:,几种特殊四边形的性质,对边平行 且相等,对边平行 且相等,对边平行,四边都相等,对边平行,四条边 都相等,对角相等,邻角互补,四个角都是直角,对角相等,邻角互补,四个角都是直角,对角线互相平分,对角线相等且互相平分,对角线互相垂直平分,每条对角线平分一组对角,对角线互相垂直平分且相等,每条对角线平分一组对角,中心对称图形,轴对称图形、中心对称图形,轴对称图形、中心对称图形,轴对称图形、中心对称图形,
链接地址:https://www.31ppt.com/p-5777649.html