应用统计学非参数检验.ppt
《应用统计学非参数检验.ppt》由会员分享,可在线阅读,更多相关《应用统计学非参数检验.ppt(29页珍藏版)》请在三一办公上搜索。
1、,非参数检验,两个配对样本的非参数检验 两个独立样本的非参数检验 多个独立样本的非参数检验 多个相关样本的非参数检验,内容提要,非参数检验,参数统计方法往往假设统计总体的分布形态已知,但是在更多的实际场合,常常由于缺乏足够信息,无法合理地去假设一个总体具有某种分布形式,此时就不能使用相应的参数方法了。因此,应该放弃对总体分布参数的依赖,转而寻求更多的纯粹来自数据的信息,这就是非参数统计方法。,非参数检验,和参数方法相比,非参数检验方法的优势如下,稳健性。因为对总体分布的约束条件大大放宽,不至于因为对统计中的假设过分理想化而无法切合实际情况,从而对个别偏离较大的数据不至于太敏感。对数据的测量尺度
2、无约束,对数据的要求也不严格,什么数据类型都可以做。适合于小样本、无分布样本、数据污染样本、混杂样本等。,非参数检验,例1 以下为治疗前后,病人某项指标的测量值,数据见npa.sav,治疗前(x):24.00 16.70 21.60 23.70 37.50 31.40 14.90 37.30 17.90 15.50 29.00 19.90,治疗后(Y):23.10 20.40 17.70 20.70 42.1 36.10 21.80 40.30 26.00 15.50 35.40 25.50,配对样本的非参数检验,配对样本的非参数检验,Wilcoxon符号检验 适用于连续变量 sign符号检验
3、 适用于对无法用数字计量的情况进行比较,如两分类,对于 连续资料最好不要使用 McNemar 实际上就是常用的配对2检验,只适用于二分类资料 Marginal Homogeneity 是McNemar法向多分类情形下的扩展,适用于资料为有序 分类情况,配对样本的非参数检验,Exact:用于计算确切概率,只给出近似概率,蒙特卡罗方法,给出精确概率值,并可设定耗时限制,配对样本的非参数检验,共12对指标,指标值治疗后小于治疗前的有3对,其平均秩次为2.83,总秩和为8.50;治疗后大于治疗前的有8对,其平均秩次为7.19,总秩和为57.50;治疗后等于治疗前的有1对。,分析结果,(1)秩次表,配对
4、样本的非参数检验,Wilcoxon符号秩检验的统计量Z值-2.179,近似概率(Asymp.sig.)P0.029,按0.05的水准可以认为治疗前后该指标值的差别具有统计学意义。,分析结果,(2)检验统计量,配对样本的非参数检验,例2 在缺氧条件下,观察4只猫与12只兔的生存时间(分钟),结果如下。试判断猫、兔在缺氧条件下生存时间的差异是否具有统计学意义。数据见npb.sav:,生存时间(猫):25 34 44 46 46,生存时间(兔):15 15 16 17 19 21 21 23 25 27 28 28 30 35,两独立样本的非参数检验,两独立样本的非参数检验,两独立样本的非参数检验,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 统计学 参数 检验
链接地址:https://www.31ppt.com/p-5775128.html