无穷集合及基数.ppt
《无穷集合及基数.ppt》由会员分享,可在线阅读,更多相关《无穷集合及基数.ppt(29页珍藏版)》请在三一办公上搜索。
1、1,第5节 无穷集合及其基数,什么是无穷集合?,无穷集合之间能否比较大小?无穷集合有什么特殊性质?,本部分内容主要是利用映射,尤其是利用双射为工具,建立可数集、不可数集,并研究它们的一些性质,从而得到无穷(限)集合的特征性质。然后将有穷集合元素的个数的概念推广到无穷集合,建立无穷集合的基数的概念。,引言,2,第4节 无穷集合及其基数,可数集不可数集基数及其比较康托-伯恩斯坦定理悖论与公理化集合论,主要内容:,3,集合的基数亦称作集合的势。粗略的说,就是一个集合的“规模”,它的“大小”,或者更确切地说,它有多少个元素。通俗的说,集合的势是量度集合所含元素多少的量。集合的势越大,所含的元素越多。很
2、明显,如果集合中只有有限个元素,我们只要数一数它有多少个可以了,这时集合的基数就是其中所含元素的个数。,什么是集合的基数?,值得注意的是无限集,它所含的元素有无穷多个,这时怎样去数?为了解决这个问题,我们首先从伽利略“悖论”说起。,4,1638年意大利的天文学家伽利略发现了下面的问题:N+=1,2,3,n,与N(2)=1,4,9,n2,这两个集合,哪一个的元素更多一些?,伽利略“悖论”,一方面,凡是N(2)的元素都是N+的元素,也就是说N(2)N+,而且由于2,3,5等元素都不在N(2)中,所以N(2)N+。这样看来,N+中的元素要比N(2)中的元素要多。,5,但另一方面,对于N+中的每个元素
3、都可以在N(2)中找到一个元素与之对应,这样看来,N(2)中的元素不比N+中的元素要少。那么到底N+与N(2)中所含元素的个数是否一样呢?如果是,那么就有 部分=整体?然而按照传统,部分怎么能等于全体呢?这就是伽利略“悖论”,它不仅困惑了伽利略,还使许多数学家亦束手无策。,伽利略“悖论”,6,1874年,Cantor注意到伽利略”悖论”。在1874年到1897年间完全解决了这个问题。Cantor详细地分析了断定有限集合的元素多少的方法,即采用数数的方法。他认为“数数的过程”就是作“一一对应的过程”。Cantor认为这种“一一对应”的方法不仅适用于有限集,也适用于无限集。他牢牢地抓住这个原则,抛
4、弃了部分必定小于全体的教条,经历了大约23年之后,他才冲破了传统观念的束缚,革命性的解决了伽利略“悖论”。Cantor认为在N+与N(2)之间存在着一一对应(即双射),因此N+与N(2)的元素个数是相等的。,一一对应与可数集,7,定义4.1 设A,B是集合,若存在着从A到B的双射,就称A和B等势(或对等),记作AB。,Cantor把自然数集N+称为可数集(或可列集),这是因为它的元素可以一个一个的数出来。凡是与自然数集N+等势的集合,它们的元素通过一一对应关系,也都可以一个一个的数出来,因此:,一一对应与可数集,定义4.2 凡是与自然数集N+等势的集合,称为可数集(或可列集)。,8,显然,N也
5、是可数的。Cantor以此为出发点,对无限集合进行考察,他发现下面的集合都是可数集:,(1)ODD=x|xN,x是奇数N,F:NODD F(n)=2n+1,(F:N+ODD F(n)=2n-1),(2)EVEN=x|xN,x是偶数N,F:NEVEN F(n)=2n,(F:N+EVEN F(n)=2(n-1)),(3)N(n)=x|x=mn,m,nN N,F:NN(n)F(m)=mn,一一对应与可数集,9,(4)NNN,一一对应与可数集,10,(6)ZZN,F:ZN F(n)=2n(n0)F(n)=2|n|-1(n0),(5)ZN,一一对应与可数集,11,Cantor在解决了ZZN后,用类似的思
6、想解决了ZnN。在这种想法之下,Cantor得到了一个令人惊异的发现:QN。并且利用他独创的“折线法”,巧妙的建立了Q与N的一一对应。为建立N到Q的双射函数,先把所有形式为p/q(p,q为整数且q0)的数排成一张表。显然所有的有理数都在这张表内。,一一对应与可数集,12,一一对应与可数集,13,注意:以0/1作为第一个数,按照箭头规定的顺序可以“数遍”表中所有的数。但是这个计数过程并没有建立N到Q的双射,因为同一个有理数可能被多次数到。例如1/1,2/2,3/3,都是有理数1。为此我们规定,在计数过程中必须跳过第二次以及以后各次所遇到的同一个有理数。如1/1被计数,那么2/2,3/3,都要被跳
7、过。表中数p/q上方的方括号内标明了这个有理数所对应的计数。这样就可以定义双射函数f:NQ,其中f(n)是n下方的有理数。从而证明了NQ。,一一对应与可数集,14,正是由于这一发现,使得他甚至猜想R也是可数集,并且着手去证明它。他没有得到预期的结果,却又作出了更伟大的发现。Cantor利用它著名的对角线法,证明了0,1是不可数集,在这个基础上证明了R也是不可数的,甚至于Rn也是不可数的。,Cantor对角线法与不可数集,注:(1)如果集合X不是可数集且X不是有限集,则称X为不可数集。,(2)可数集与不可数集是对无穷集合而言的,有限集既不称作不可数集合也不称作可数集。,15,定理4.1 区间0,
8、1中的所有实数构成的集合是不可数集。,证 区间0,1中每个实数,都可以写成十进制无限位小数形式0.a1a2a3a4.,其中每位ai0,1,2,.,9。,约定每个有限位小数后均补以无限多0。,假定定理不成立,于是0,1中全体实数可排成一个无穷序列:a1,a2,a3,.,an,.。,Cantor对角线法与不可数集,16,每个ai写成十进制无限小数形式排成下表,a1=0.a11a12a13a14.a1n.a2=0.a21a22a23a24.a2n.a3=0.a31a32a33a34.a3n.an=0.an1an2an3an4.ann.,其中aij0,1,2,.,9,构造一个新的小数 b=0.b1b2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无穷 集合 基数
链接地址:https://www.31ppt.com/p-5767864.html