第7章方差分析与实验设计.ppt
《第7章方差分析与实验设计.ppt》由会员分享,可在线阅读,更多相关《第7章方差分析与实验设计.ppt(84页珍藏版)》请在三一办公上搜索。
1、作者 贾俊平,统 计 学(第三版),2008,2008年8月,警惕过多地假设检验。你对数据越苛求,数据会越多地向你供认,但在威逼下得到的供词,在科学询查的法庭上是不容许的。Stephen M.Stigler,统计名言,第 7 章 方差分析与实验设计,7.1 方差分析的基本原理7.2 单因子方差分析7.3 双因子方差分析7.4 实验设计初步,2008年8月,学习目标,方差分析的基本思想和原理单因子方差分析多重比较双因子方差分析的方法实验设计方法与数据分析,2008年8月,不同运动队的平均成绩之间是否有显著差异?,奥运会女子团体射箭比赛,每个对有3名运动员。进入最后决赛的运动队需要进行4组射击,每
2、个队员进行两次射击。这样,每个组共射出6箭,4组共射出24箭在2008年8月10日进行的第29届北京奥运会女子团体射箭比赛中,获得前3名的运动队最后决赛的成绩如下表所示,2008年8月,不同运动队的平均成绩之间是否有显著差异?,每个队伍的24箭成绩可以看作是该队伍射箭成绩的一个随机样本。获得金牌、银牌和铜牌的队伍之间的射箭成绩是否有显著差异呢?如果采用第6章介绍的假设检验方法,用分布做两两的比较,则需要做次比较。这样做不仅繁琐,而且每次检验犯第类错误的概率都是,作多次检验会使犯第类错误的概率相应地增加,检验完成时,犯第类错误的概率会大于。同时,随着检验的次数的增加,偶然因素导致差别的可能性也会
3、增加采用方差分析方法很容易解决这样的问题,它是同时考虑所有的样本数据,一次检验即可判断多个总体的均值是否相同,这不仅排除了犯错误的累积概率,也提高了检验的效率方差分析方法就很容易解决这样的问题,它是同时考虑所有的样本数据,一次检验即可判断多个总体的均值是否相同,这不仅排除了犯错误的累积概率,也提高了检验的效率,7.1 方差分析的基本原理 7.1.1 什么是方差分析?7.1.2 从误差分析入手 7.1.3 在什么样的前提下分析?,第 7 章 方差分析与实验设计,7.1.1 什么是方差分析?,7.1 方差分析的基本原理,2008年8月,什么是方差分析(ANOVA)?(analysis of var
4、iance),方差分析的基本原理是在20世纪20年代由英国统计学家Ronald A.Fisher在进行实验设计时为解释实验数据而首先引入的 检验多个总体均值是否相等通过分析数据的误差判断各总体均值是否相等研究分类型自变量对数值型因变量的影响 一个或多个分类型自变量两个或多个(k 个)处理水平或分类一个数值型因变量有单因子方差分析和双因子方差分析单因子方差分析:涉及一个分类的自变量双因子方差分析:涉及两个分类的自变量,2008年8月,什么是方差分析?(例题分析),【例】确定超市的位置和竞争者的数量对销售额是否有显著影响,获得的年销售额数据(单位:万元)如下表,因子,水平或处理,样本数据,2008
5、年8月,什么是方差分析?(例题分析),如果只考虑“超市位置”对销售额是否有显著影响,实际上也就是要判断不同位置超市的销售额均值是否相同若它们的均值相同,意味着“超市位置”对销售额没有显著影响;若均值不全相同,则意味着“超市位置”对销售额有显著影响“超市位置”就是分类自变量,“销售额”则是数值因变量。“超市位置”是要检验的对象,称为因子(factor),商业区、居民小区、写字楼是因子的3个取值,称为水平(level)或处理(treatment)。每个因子水平下得到的销售额为样本观测值方差分析要解决的问题就是判断超市的位置对销售额是否有显著影响。设商业区、居民小区和写字楼3个位置超市的销售额均值是
6、否相同,7.1.2 从误差分析入手,7.1 方差分析的基本原理,2008年8月,方差分析的基本原理(误差分解),总误差(total error)反映全部观测数据的误差称所抽取的全部36家超市的销售额之间差异 随机误差(random error)组内误差(within-group error)由于抽样的随机性造成的误差反映样本内部数据之间的随机误差处理误差(treatment error)组间误差(between-group error)不同的处理影响所造成的误差反映样本之间数据的差异,2008年8月,方差分析的基本原理(误差分解),数据的误差用平方和(sum of squares)表示,记为S
7、S总平方和(sum of squares for total)记为SST反映全部数据总误差大小的平方和抽取的全部36家超市销售额之间的误差平方和组内平方和(within-group sum of squares)记为SS组内反映组内误差大小的平方和 比如,每个位置超市销售额的误差平方和 只包含随机误差组间平方和(between-group sum of squares)记为SS组间反映组间误差大小的平方和 比如,同位置超市销售额之间的误差平方和 既包括随机误差,也包括处理误差,2008年8月,方差分析的基本原理(误差分解),误差平方和的分解及其关系,总误差,总平方和(SST),随机误差,处理误
8、差,组内平方和(SS组内),组间平方和(SS组间),=,=,+,+,2008年8月,方差分析的基本原理(误差分析),误差的大小用均方(mean square)来表示,也称为方差(variance)平方和除以相应的自由度总平方和(SST)的自由度为n-1;组内平方和(SS组内)的自由度为n-k;组间平方和(SS组间)的自由度为k-1组内平方和除以相应的自由度结果称为组内方差(within-group variance);组间平方和除以相应的自由度结果称为组间方差(between-group variance),2008年8月,方差分析的基本原理(误差分析),判断原假设是否成立,就是判断组间方差与
9、组内方差是否有显著差异若原假设成立,组间均方与组内均方的数值就应该很接近,它们的比值就会接近1若原假设不成立,组间均方会大于组内均方,它们之间的比值就会大于1当这个比值大到某种程度时,就可以说不同水平之间存在着显著差异,即自变量对因变量有影响,7.1.3 在什么样的前提下分析?,7.1 方差分析的基本原理,2008年8月,方差分析的基本假定,正态性(normality)。每个总体都应服从正态分布,即对于因子的每一个水平,其观测值是来自正态分布总体的简单随机样本在例7.1中,要求每个位置超市的销售额必须服从正态分布检验总体是否服从正态分布的方法有很多,包括对样本数据作直方图、茎叶图、箱线图、正态
10、概率图做描述性判断,也可以进行非参数检验等 方差齐性(homogeneity variance)。各个总体的方差必须相同,对于分类变量的个水平,有12=22=k2在例7.1中,要求不同位置超市的销售额的方差都相同独立性(independence)。每个样本数据是来自因子各水平的独立样本(该假定不满足对结果影响较大)在例7.1中,3个样本数据是来自不同位置超市的3个独立样本,2008年8月,方差分析中基本假定,如果原假设成立,即H0:m1=m2=m3不同位置超市的平均销售额相等 意味着每个样本都来自均值为、方差为 2的同一正态总体,X,f(X),1 2 3 4,2008年8月,方差分析中基本假定
11、,若备择假设成立,即H1:mi(i=1,2,3)不全相等至少有一个总体的均值是不同的3个样本分别来自均值不同的3个正态总体,X,f(X),1 2 3,7.2 单因子方差分析 7.2.1 检验步骤 7.2.2 关系有多强?7.2.3 哪些均值之间有显著差异?,第 7 章 方差分析与实验设计,7.2.1 检验步骤,7.2 单因子方差分析,2008年8月,单因子方差分析(one-way analysis of variance),只考虑一个分类型自变量影响的方差分析比如,在例7.1中,只考虑超市位置一个因子对销售额度影响,或者只考虑竞争者数量对销售额的影响,都属于单因子方差分析分析步骤包括提出假设构
12、造检验统计量做出决策,2008年8月,提出假设,一般提法H0:m1=m2=mk 自变量对因变量没有显著影响 H1:m1,m2,mk不全相等自变量对因变量有显著影响 注意:拒绝原假设,只表明至少有两个总体的均值不相等,并不意味着所有的均值都不相等,2008年8月,构造检验的统计量F,将组间方差MS组间除以组内方差MS组内即得到所需要的检验统计量F当H0为真时,二者的比值服从分子自由度为k-1、分母自由度为 n-k 的 F 分布,即,组间平方和,组内平方和,2008年8月,做出决策,将统计量的值F与给定的显著性水平的临界值F进行比较(或计算出统计量的P值),做出决策若PF,不拒绝原假设H0,无证据
13、表明所检验的因子对观察值有显著影响,2008年8月,作出决策(F分布与拒绝域),如果均值相等,F=MS组间/MS组内1,2008年8月,单因子方差分析(例题分析),【例】检验超市位置对销售额是否有显著影响(=0.05),2008年8月,单因子方差分析(例题分析),提出假设。设不同位置超市销售额的均值分别为1(商业区)、2(居民小区)和3(写字楼),提出的假设为H0:1 2 3 H1:1,2,3 不全相等检验方差分析的前提进行分析并做出决策,2008年8月,单因子方差分析(方差分析假定的判断),箱线图分析,好像不一样?,2008年8月,单因子方差分析(方差分析假定的判断),概率图分析,2008年
14、8月,用Excel进行方差分析,第1步:选择“工具”下拉菜单第2步:选择【数据分析】选项第3步:在分析工具中选择【单因子方差分析】,然后选择【确定】第4步:当对话框出现时 在【输入区域】方框内键入数据单元格区域 在【】方框内键入0.05(可根据需要确定)在【输出选项】中选择输出区域,用Excel进行方差分析,2008年8月,单因子方差分析(例题分析),拒绝H0,7.2.2 关系有多强?,7.2 单因子方差分析,2008年8月,关系强度的测量,拒绝原假设表明因子(自变量)与观测值之间有显著关系组间平方和(SS组间)度量了自变量(超市位置)对因变量(销售额)的影响效应当组间平方和比组内平方和(SS
15、E)大,而且大到一定程度时,就意味着两个变量之间的关系显著,大得越多,表明它们之间的关系就越强。反之,就意味着两个变量之间的关系不显著,小得越多,表明它们之间的关系就越弱,2008年8月,关系强度的测量,变量间关系的强度用自变量平方和(SS组间)占总平方和(SST)的比例大小来反映自变量平方和占总平方和的比例记为R2,即其平方根R可以用来测量两个变量之间的关系强度,例题分析:R2=44.74%,R=0.6689。表明超市位置(自变量)对销售额(因变量)的影响效应占总效应的44.74%。尽管并不高,但超市位置对销售额的影响都已经达到了统计上显著的程度。R表明超市位置与销售额之间已达到中等以上的相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方差分析 实验设计
链接地址:https://www.31ppt.com/p-5766418.html