应用统计学两个总体的假设检验.ppt
《应用统计学两个总体的假设检验.ppt》由会员分享,可在线阅读,更多相关《应用统计学两个总体的假设检验.ppt(20页珍藏版)》请在三一办公上搜索。
1、1,本章教学目标掌握运用 Excel 的“数据分析”及其统计函数功能求解两个总体的假设检验问题。,第8章 两个总体的假设检验,2,本章主要内容:,8.1 案例介绍 8.2 两个独立正态总体均值的检验8.3 成对样本试验的均值检验8.4 两个正态总体方差的检验(F检验)8.5 两个总体比例的检验8.6 两个总体的假设检验小结,3,【案例1】新工艺是否有效?某厂生产的一种钢丝的平均抗拉强度为 10560(kg/cm2)。现采用新工艺生产了一种新钢丝,随机抽取 10 根,测得抗拉强度为:10512,10623,10668,10554,10776 10707,10557,10581,10666,106
2、70 求得新钢丝的平均抗拉强度为 10631.4(kg/cm2)。是否就可以作出新钢丝的平均抗拉强度高于原钢丝,即新工艺有效的结论?,8.1 案例介绍,4,为分析甲、乙两种安眠药的效果,某医院将20个失眠病人分成两组,每组10人,两组病人分别服用甲、乙两种安眠药作对比试验。试验结果如下:两种安眠药延长睡眠时间对比试验(小时),(1)哪种安眠药的疗效好?(2)如果将试验方法改为对同一组10个病人,每人分别服用甲、乙两种安眠药作对比试验,试验结果仍如上表,此时结论如何?,案例1哪种安眠药的疗效好?,5,设总体 X1 N(1,12),,X2N(2,22),,且 X1和 X2 相互独立。,和 S12,
3、S22 分别是,它们的样本的均值和样本方差,,样本容量分别为,n1和 n2。,原假设为,H0:1=2,8.2 两个独立正态总体均值的检验,6,可以证明,当 H0 为真时,统计量,其中:,完全类似地,可以得到如下检验方法:,t(n1+n2-2),称为合并方差。,1.12=22=2,,但 2 未知,(t 检验),7,测得甲,乙两种品牌轿车的首次故障里程数数据如下:甲品牌 X1:1200,1400,1580,1700,1900乙品牌 X2:1100,1300,1800,1800,2000,2400设 X1和 X2 的方差相同。问在水平 0.05 下,(1)两种轿车的平均首次故障里程数之间有无显著差异
4、?(2)乙品牌轿车的平均首次故障里程是否比甲品牌有显著提高?,【案例2】轿车质量差异的检验,8,解:,双边检验问题,S12=269.62,,S22=471.92,12=22=2 未知,,n1=5,,H0:1=2,H1:12。,由所给数据,可求得,|t|=0.74,t/2(n1+n2-2),=t0.025(9),故两种轿车的平均首次故障里程间无显著差异,,即两种轿车的该项质量指标是处于同一水平的。,n2=6,,=2.2622,9,(2)左边检验,t=-0.74-t(n1+n2-2)=-t0.05(9)=-1.833故乙品牌轿车平均首次故障里程并不显著高于甲品牌。显然,对给定的水平,若单边检验不显
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 统计学 两个 总体 假设检验
链接地址:https://www.31ppt.com/p-5764467.html