智能模糊传感器.ppt
《智能模糊传感器.ppt》由会员分享,可在线阅读,更多相关《智能模糊传感器.ppt(98页珍藏版)》请在三一办公上搜索。
1、第8章 智能模糊传感器,8.1 基础知识 8.2 模糊传感器基本概念、功能及结构 8.3 模糊传感器语言概念的产生办法 8.4 模糊传感器举例,8.1 基 础 知 识,8.1.1 测量结果“符号化表示”的概念,根据国际通用计量学基本名词的定义:测量是以确定被测量值为目的的一组操作,也就是说,测量是将被测量与标准量(单位)进行比较的过程。传统测量就在于追求被测量与标准量(单位)的比值的精确数值,测量结果就以比值(倍数)的数值与标准量(单位)来表示。因此,传统测量是一种数值测量,其测量结果的表示是一种数值符号描述,也即是对被测对象给以定量的描述。这种数值符号描述方式有许多优点:如精确、严密;可以给
2、出许多定量的算术表达式;等等。,8.1.2 符号测量系统符号传感器系统 一、符号测量系统的基本概念与组成,图 8-1 符号(化)测量系统原理和示意图,图 8-1 符号(化)测量系统原理和示意图,图 8-2 测量的符号系统,二、三种符号系统 1.数值符号系统 该系统完成将被测对象的有关物理参量向数值域的转换,又称映射。这就是一个用符号表示的传统的测量系统,由传统传感器及其调理电路和相应的预处理软件来实现。该系统Q1的组成用符号表示为Q1=q,N,1,Rq,RN,F1,(1)q被测对象的集合,又称对象域,由多个元素构成,记为q1,q2,qkq,或 q=q1,q2,qk,k2其中q1,q2,qk为对
3、象域q的k2个元素,如温度测量系统需测量k个不同温度状态。,(2)N数值(实数)符号集合,又称数值域,由多个元素构成,记为x1,x2,xkN,或 N=x1,x2,xk,k2其中x1,x2,xk为数值域N的k2个元素,它们是被测对象与有关物理参量相对应的数值。,(3)1映射关系,表示由对象域向数值域映射或转换的某种关系,记为1:qN使得有关系xi=1(qi)成立。1是传统数值测量系统转换性能的体现,各种环境干扰因素会影响实际数值测量系统的转换性能,故1也受环境干扰因素变化的影响。(4)Rq实际被测对象集合中各元素q1,q2,qk间的关,(5)RN数值集合中各元素x1,x2,xk间的关系(所谓各元
4、素间的关系,是指它们可以依次递增或依次递减或线性相加等)。(6)F1Rq到RN关系的映射,记为F1:Rq RN使得有关系RN=F1(Rq)成立。F1构成了数值符号系统的关系概念。,2.语言符号系统 该系统完成由数值域向伪语言符号域的转换,或称映射。因此该系统将数值域N:x1,x2,xk与语言域Y:1,2,k相对应,它是图 8-1(a)中的数值符号转换器,是由软件实现的。该系统的Q用符号表示为,式中各符号的含义为:(1)N数值符号集合,即数值域,N=x1,x2,xk。(2)Y语言符号集合,又称伪语言符号域,简称语言域。冠以“伪”字是为了表示与人类自然语言符号域的区别,它由元素1,2,j构成,记为
5、1,2,jY,或 Y=1,2,j,j2,(3)映射关系,表示由数值域N向语言域Y映射或转换的关系,记为:NY使得有关系j=(xi),1=(x1),2=(x2),成立。就是图 8-1(a)中数值符号转换单元转换性能的体现。(4)RN数值集合中各元素x1,x2,xk间的关系。,(5)RY语言符号集合中各元素1,2,j间的关系。(6)FRN到RY的映射关系,记为F:RN RY使得关系RY=F(RN)成立。F构成了语言符号系统的关系概念。,3.人类自然语言符号系统 该系统直接将现实世界与自然语言符号域相对应。这是人类本身依靠感知,溶入知识与经验,进行综合分析、推理、判断而实现的。需要指出的是,不同的测
6、量任务,在各种“域”中的有限个元素集合,将构成各自的“论域”。例如,一个温度测量系统,它的测温范围下限值为0,上限值为160,就可以说该测温系统的论域为N=(0,160)。这里的论域是由有限个温度数值(元素集合组成的数值域。,三、模糊传感器的基本概念 我们已知符号测量系统由传统的数值测量单元/系统与数值符号转换单元组成的,也就是在传统的数值测量单元/系统的基础上增加一个数值符号转换单元。因此,数值符号转换单元是符号测量系统的核心。数值符号转换单元的功能就是完成测量数值由数值域向语言域的转换。其转换方式有多种,也即映射关系可以有多种形式。其中,采用模糊集合理论方法来构成数值符号转换单元以实现测量
7、的数值结果转换为人类自然语言符号表示的符号测量系统符号传感器,称为模糊传感器。,8.1.3 模糊集合理论基本概念,一、模糊集合 1.模糊集合的定义 对于由一个对象组成的论域U=x1,x2,xn,即U为由对象中所有的元素xi(i=1,2,n)构成的集合。设从U到0,1闭区间有映射A,表示为A:U0,1则称A确定了U的一个模糊集合A,而A称为模糊集合A的隶属函数。,映射A将U上任意一点x映射到闭区间0,1上的值为A(x),称为论域U中元素x隶属于模糊集合A的程度,简称x对A的隶属度。显然,A(x)的取值范围为0,1,其大小反映x属于A的程度。A(x)值接近于1时表示x属于A的程度高,A(x)值接近
8、于0时表示x属于A的程度低。模糊集合A完全由隶属函数A所刻画,即只要给定隶属函数,那么,模糊集合就完全确定了。不同的隶属函数确定不同的模糊集合,同一论域U上可以有多个模糊集合。对于任意U上的元素x及模糊集合A,我们一般不能说x是否隶属于A,只能说x属于A的程度有多大。这也正是模糊集合同精确集合的本质区别。,特别地,当A(x)只取0,1区间的两个端点时,模糊集合A就退化为一个精确集合了。由此可见,精确集合是模糊集合的特殊形式。另外,对于论域U上的任意元素x,若A(x)=0,表示论域U上的所有元素均不属于模糊集合A,即模糊集合A为空集;若A(x)=1,表示论域U上的所有元素都在模糊集合A中,即模糊
9、集合A为整个论域U。,2.举例说明模糊集合A与隶属函数A的关系(1)“成绩好”是一个模糊概念。因为,简单地用高于某个分数的就算成绩好,否则就算成绩不好是不甚合适的。比较科学的方法是采用一个模糊集合A来描述“成绩好”这个模糊概念。若采用5分制,则不妨用论域U=0,1,2,3,4,5上的隶属函数A(x)来表示模糊集合A,即,(2)再以年龄的集合U=0,150为论域,“年老”和“年轻”为两个模糊概念,可以分别用模糊集O和Y来表示。其相应的隶属函数如下:,当0 x50,当50 x150,当0 x25,当25x150,图 8-3“年老”与“年轻”隶属函数示意图(a)“年老”;(b)“年轻”;(c)合成图
10、,图 8-3“年老”与“年轻”隶属函数示意图(a)“年老”;(b)“年轻”;(c)合成图,二、确定隶属函数的方法,1.确定隶属函数的一般原则(1)若模糊集合反映的是社会的一般意识,是大量的可重复表达的个别意识的平均结果。例如,青年人,经济增长快、生产正常等,则此时采用模糊统计法来求隶属函数较为理想。(2)如果模糊集合反映的是某个时间段内的个别意识、经验和判断,例如,某专家对某个项目的可行性评价,那么,对这类问题可采用Delphi法。,(3)若模糊集合反映的模糊概念已有相应成熟的指标,这种指标经过长期实践检验已成为公认的对事物是真实的又是本质的刻画,则可直接采用这种指标,或者通过某种方式将这种指
11、标转化为隶属函数。(4)对某些模糊概念,虽然直接给出其隶属函数比较困难,但可以比较两个元素相应的隶属度,此时可用相对选择法求得其隶属函数。(5)若一个模糊概念是由若干个模糊因素复合而成的,则可先求单个因素的隶属函数,再综合出模糊概念的隶属函数。,2.几种常见的隶属函数及其曲线(1)矩形:如图 8-4(a)所示。,图 8-4 三种常见隶属函数曲线示意图(a)矩形曲线;(b)梯形曲线;(c)柯西形曲线,(2)梯形:如图 8-4(b)所示。,(3)柯西形:如图 8-4(c)所示。,(常量k0),三、模糊算子,1.有界算子“+”、“-”,也就是说,隶属度A(x)与B(x)的模糊和的值是A(x)与B(x
12、)的数值和,而且若A(x)与B(x)的数值和大于1,则隶属度A(x)与B(x)的模糊和的值取为1。,2.最大、最小算子“”、“”,3.乘积算子“”,即A(x)和B(x)的模糊积就是它们的数值积。,四、含义映射(a)与描述映射l(x),1.含义映射(a)语言值a的含义定义为从语言域到数值域的一个子集P(N)的映射,所谓N的子集P(N)就是由N中的若干个元素组成的新的集合,显然有P(N)N或者P(N)=N。含义映射(a)可以表示为:YP(N)其中,对于任意aY,有(a)=xN。即对于语言域Y上的任意一个元素a,它的原像可用(a)表示,且等于数值域上的x,也就是说x是a的含义。含义映射保证两个相同的
13、语言值有相同的含义。语言值和含义间的联系叫做语言概念。,2.描述映射l(x)对于每个数值测量量x,与其相应的语言值a之间的关系叫做描述映射l(x),即l:NP(Y)其中,对于任意xN,有l(x)=aY。即对于数值域N上的任意一个元素x,它的像可用l(x)表示,且等于符号域上的a,就是说a是x的描述。,映射、和l是对被测对象的同一信息的三个独立的表述。但是这三个关系中确定任意一个可推出其它两个。事实上,如果语言值a为测量值x的描述,则等于说x为a的含义。更进一步地,我们可以举例说明:令语言域Y为小,中,大,其语言值“小”、“中”、“大”的含义如下:(小)=0,1.70(中)=1.65,1.80(
14、大)=1.75,1.90那么,测量值x=1.78的描述为l(1.78)=中,大,五、模糊语义和模糊描述,1.模糊语义 语言值的模糊语义是语言域Y到数值域N上的模糊子集F(N)的映射,表示为:YF(N)那么语言值a的模糊语义为x,即可以写成x=(a)。2.模糊描述 数值量的模糊描述是从数值域N到语言域Y上的模糊子集F(Y)的映射,表示为l:NF(Y)如果数值量x的模糊描述为a,即可以写成a=l(x)。,3.模糊关系 模糊语义和模糊描述之间的模糊关系R的隶属函数表示为R:YN0,1式中映射R将Y集合与N集合的并集合YN中的有序对(a,x)与模糊关系R的隶属函数R(a,x)相连系。在语言域Y中给定一
15、个语言量a,模糊关系R就在数值域N中确定一个模糊子集(a),则任意一个属于数值域N中的数值量x属于模糊子集(a)的程度(a)(x)由模糊关系隶属函数R(a,x)给定,即(a)(x)=R(a,x),同样地,在数值域N中给定一个数值量x,模糊关系R就在语言域Y中确定一个模糊子集l(x),则语言域Y上的任意一个语言量a属于语言域Y的模糊子集l(x)的程度l(x)(x)也由模糊关系隶属函数R(a,x)决定,即l(x)(x)=R(a,x)因此,模糊语义与模糊描述的关系如下:(a)(x)=l(x)(x)显然,这反过来又说明模糊关系R:NY必然是同构映射。,被测对象域和符号域Y之间的映射关系也不是惟一的。将
16、通过变换法则F变为=F(),只要保持其测量分度的类型的有效性不变,即映射采用标称分度,映射也采用标称分度,则我们说变换法则F是允许的。对于标称测量而言,可允许的变换法则F是任意一个一一映射;对于顺序测量而言,F是任意一个单调增映射;对于线性测量而言,F必须满足:=F()=+式中:和为大于0的实数。,2.模糊分度,1)模糊标称分度(Nominal Fuzzy Scale)为了获得论域空间上的运算分度,必须在其上定义一个等价关系,这与定义在数值域上的等价关系是对应的。给定符号域Y中的某两个元素a和b,有,式中:l(x)(a)表示语言域Y上的元素a隶属于模糊子集l(x)的隶属度;l(x)(b)表示语
17、言域Y上的元素b隶属于模糊子集l(x)的隶属度;(a)(x)表示数值域N上的元素x隶属于模糊子集(a)的隶属度;(b)(x)表示数值域N上的元素x隶属于模糊子集(b)的隶属度。对于数值测量的描述,通常情况下可以得到语言域Y上的一个模糊子集。语言域Y上两个模糊子集间的等价关系定义为,式中:l(x)和l(x)分别表示语言域Y上的两个模糊子集;l(x)(a)表示语言域上的元素a隶属模糊集合l(x)的程度;l(x)(a)表示语言域上的元素a隶属模糊集合l(x)的程度。这个关系意味着 由于这个推导关系的右边等式是不能推出左边的等式的,因此可以知道标称数值分度比标称模糊分度更精确。,2)模糊顺序分度(Or
18、dinal Fuzzy Scale)给定符号域Y中的某两个元素a和b,我们定义式中:(-,(b)(x)=1-(b),+)(x)(b),+)(x)=inf1-(b)(y)|xy,另外,我们利用下面的关系定义了F(Y)上的距离:,对于任意aA,若有inf(A)a,而inf(A)b,则称b是A的任一下界;若有sup(a)a,而sup(a),则称是A的任一个上界。由此可见,模糊分度的作用就是确定模糊语义间的等价或顺序关系。,8.2 模糊传感器基本概念、功能及结构,8.2.1 模糊传感器的基本概念,L.Foully认为模糊传感器是一种能在线实现符号处理的灵敏传感器;D.Stipanicer认为模糊传感器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 模糊 传感器
链接地址:https://www.31ppt.com/p-5748303.html