无损检测超声波二级培训教材.ppt
《无损检测超声波二级培训教材.ppt》由会员分享,可在线阅读,更多相关《无损检测超声波二级培训教材.ppt(143页珍藏版)》请在三一办公上搜索。
1、UT第1章 绪论超声检测通常是指工件内部宏观缺陷检测和材料厚度测量。1.1超声检测基础知识次声波、声波和超声波它们都是在弹性介质中传播的机械波,同一波形在同一介质中的传播速度是相同的,它们的区别主要在于频率不同。人们日常所听到的各种声音,是由于各种声源的振动通过空气等弹性介质传播到耳膜,引起耳膜振动,牵动听觉神经,使人产生听觉。,1,能引起人们听觉的机械波称为声波,其频率为2020kHz之间;频率低于20Hz的机械波称为次声波;频率高于20kHz的机械波称为超声波。次声波和超声波,人耳是听不到的。用于宏观缺陷检测的超声波,其常用频率为0.525MHz,对于钢等金属材料的检测,常用频率为0.51
2、0MHz。超声波的特点就是频率高,因而使超声波具有一些重要特性,使其能广泛用于无损检测。1.超声波方向性好:超声波频率高,波长短,扩散角小,可以定向发射,犹如手电筒发出的一束光,可在黑暗中找到所需物品一样在被检材料中发现缺陷。2.超声波能量高:超声波的检测频率远高于声波,其声强与频率的平方成正比。,2,3.超声波能在异质界面产生反射、折射、衍射和波形转换:在超声检测中,特别是在脉冲反射法检测中,利用了超声波几何声学的一些特点,如在介质中直线传播,遇界面产生反射、折射等。4.超声波穿透能力强:超声波在大多数介质中传播时,传播能量损失小,传播距离大,穿透能力强,在很多金属材料中其穿透能力可达数米。
3、,3,1.1.2 超声检测工作原理超声检测主要基于超声波在工件中的传播特性,如超声波在通过材料时能量会损失;在遇到声阻抗不同的两种介质的界面时会发生反射等。其主要的工作过程是:,4,1.声源产生超声波,并通过一定的方式进入工件;2.超声波在工件中传播并与工件材料及其中的缺陷相互作用,使其传播方向或特征发生改变;3.改变后的超声波通过检测设备接收,并对其进行处理和分析;4.根据接收到的超声波信号特征,评估工件表面及其内部是否存在缺陷及缺陷的特征。通常用来发现缺陷并对其进行评估的基本信息是:,5,1.是否存在来自缺陷的超声信号及其幅度;2.回波的传播时间;3.超声波通过材料后的能量衰减。,6,第2
4、章 超声波探伤的物理基础超声波是一种机械波,是机械振动在介质中的传播。机械振动与波动是超声波探伤的物理基础。超声波探伤中,主要涉及到几何声学和物理声学中的一些基本定律和概念。如几何声学中的反射、折射定律及波型转换;物理声学中波的叠加、干涉、衍射等。,7,2.1 机械振动与机械波2.1.1 机械振动物体(或质点)在某一平衡位置附近作来回往复的运动,称为机械振动。振动是自然界最常见的一种运动形式。,8,振动产生的必要条件是:物体一离开平衡位置就会受到回复力的作用;阻力要足够小。物体(或质点)受到一定力的作用,将离开平衡位置,产生一个位移;该力消失后,在回复力作用下,它将向平衡位置运动,并且还要越过
5、平衡位置移动到相反方向的最大位移位置,然后再向平衡位置运动。,9,这样一个完整运动过程称为一个“循环”或叫一次“全振动”。每经过一定时间后,振动体总是回复到原来的状态(或位置)的振动称为周期性振动,不具有上述周期性规律的振动称为非周期性振动。,10,振动是往复的运动,振动的快慢常用振动周期和振动频率两个物理量来描述。振动的强弱用振幅来表征。周期:当物体作往复运动时完成一次全振动所需的时间,称为振动周期,用 T 表示。常用单位为秒(s)。对于非周期性振动,往复运动已不再是周期性的,但周期这个物理量仍然可以反映这种运动的往复情况。频率:振动物体在单位时间内完成全振动的次数,称为振动频率,用 f 表
6、示。常用单位是赫兹(Hz)。1Hz=1次/s。频率和周期互为倒数:T=,11,振幅:振动物体离开平衡位置的最大距离,称为振动的振幅,用 A 标示。1.谐振动:物体(或质点)在受到跟位移大小成正比、而方向总指向平衡位置的回复力作用下的振动,就叫做谐振动。(P8),12,弹簧振子的谐振动:弹簧一端固定,质量不计;另一端连接一小球。当小球处于O点时,所受外力为零,弹簧没有变形,小球不受力,该点就是平衡位置。将小球从平衡位置O向右拉到A点,然后释放,小球将左右振动。,14,小球振动过程中,其重力与表面支持力始终平衡,假定小球的运动没有任何其他阻力,对振动起作用的只有弹簧作用在小球上的弹力。当小球受到外
7、力作用被拉到O点右侧的A点时,它对平衡位置的位移方向向右,而所受弹力的方向却向左。当小球运动到O点左侧时,位移方向向左,而弹力方向却向右。该弹力的方向总是跟小球对平衡位置的位移方向相反,指向平衡位置。这个弹力就是使小球振动的回复力。,15,根据胡克定律,弹簧提供的回复力F的大小与小球相对平衡位置的位移X成正比。F=-Kx K为弹簧的倔强系数(又称劲度系数或弹性系数-反映弹簧的软硬程度,它与弹簧的材料性质,截面积和原长度有关。单位是N/m),负号表示回复力与位移方向相反。,16,从运动学角度分析,弹簧振子的运动可以用振动图像直观地表示出来,表示振动质点的位移随时间变化的规律。运动学(kinema
8、tics),从几何的角度(指不涉及物体本身的物理性质和加在物体上的力)描述和研究物体位置随时间的变化规律的力学分支。下图是以纵轴表示时间,横轴表示质点位移而形成的谐振动图像。,17,18,19,谐振动与做匀速圆周运动的质点在 X轴上投影的运动特点完全一致。以振幅 A为半径作园,质点M沿圆周作匀速运动,质点M的水平位移X和时间t的关系可用下式描述:,20,式中:A:振幅,表征振动质点离开平衡位置的最大位移;:振动相位,表征振动质点在某一时刻 t的位置和质点的运动方向,即:表征质点的运动状态;X:某一时刻的水平位移。,22,人们将位移随时间的变化符合余弦(或正弦)规律的振动形式称为谐振动。谐振动的
9、振幅、频率和周期保持不变,其频率为振动系统的固有频率,是最简单、最基本的一种振动。任何复杂的振动都可视为多个谐振动的合成。作谐振动的物体在平衡位置时动能最大、势能为零;在位移最大处势能最大、动能为零。其总能量保持不变。,23,2.阻尼振动:谐振动是理想条件下的振动,不考虑摩擦和其它阻力的影响。但任何实际物体的振动,总要受到阻力的作用。由于要克服阻力做功,则振动物体的能量不断减少。这种振幅或能量随时间不断减少的振动,称为阻尼振动。,24,3.受迫振动:物体受到周期性变化的外力作用时,产生的振动。受迫振动刚开始时情况很复杂,经过一段时间后达到稳定状态,变为周期性的谐振动。其振动频率与策动力频率相同
10、,振幅保持不变。受迫振动的振幅与策动力的频率有关,当策动力频率与受迫振动物体固有频率相同时,受迫振动的振幅达最大值。这种现象称为共振。超声波探头中的压电晶片在发射超声波和接收超声波时,产生的是受迫振动和阻尼振动。,25,在设计探头中的压电晶片时,若使高频电脉冲的频率等于压电晶片的固有频率,就会产生共振,这时压电晶片的电声能量转换效率最高。,26,2.1.2 机械波1.机械波的产生与传播振动的传播过程称为波动。分机械波和电磁波两大类。机械波是机械振动在弹性介质中的传播过程;电磁波是交变电磁场在空间的传播过程。,27,在介质内部,各质点间以弹性力连接在一起,称为弹性介质。在弹性力的作用下,弹性介质
11、中一个质点的振动就会引起临近质点的振动,邻近质点的振动又会引起较远质点的振动,于是振动就以一定的速度由近及远地向各个方向传播开来,从而就形成了机械波。产生机械波必须具备以下两个条件:(1)要有作机械振动的波源。(2)要有能传播机械振动的弹性介质。,28,一般固体、液体、气体都可视为弹性介质。液体和气体不能用上述弹性力的模型来描述,其弹性波是在受到压力时体积的收缩和膨胀产生的。,29,振动与波动是互相关联的,振动是产生波动的根源,波动是振动状态的传播。波动中介质各质点并不随波前进,而是按照与波源相同的振动频率在各自的平衡位置上振动,并将能量传递给周围的质点。这种能量的传播,不是靠物质的迁移来实现
12、的,也不是靠相邻质点的弹性碰撞来完成的,而是由各质点的位移连续变化来逐渐传递出去的。因此,机械波的传播不是物质的传播,而是振动状态和能量的传播。,30,机械波的传播特点每个质点只在平衡位置附近振动,不向前运动。后面质点重复前面质点的振动状态,有相位落后。所有质点同一时刻位移不同,形成一个波形。振动状态、波形、能量向前传播。,31,2.机械波的主要物理量(1)波长:同一波线上相邻两振动相位相同的质点的距离,称为波长,用表示。波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离。波长的常用单位为毫米(mm)。或米(m)。,33,(2)周期T和频率f:为波动经过的介质质点产生机械振动的周期
13、和频率。机械波的周期和频率只与振源有关,与传播介质无关。波动频率也可定义为波动过程中,任一给定点在1秒钟内所通过的完整波的个数,与该点振动频率数值相同,单位为赫兹(Hz)。而波前进一个波长的距离所需要的时间,即为周期。同样可以说:波经历一个完整周期所传播的距离,即为波长。,34,(3)波速C:波动中,波在单位时间内所传播的距离称为波速,用C表示。常用单位为米/秒(m/s)。次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。它们的区别主要在于频率不同。C=f 或=C/f振动的传播速度称为波速(声速),不要把波速与质点的振动速度混淆起来,质点的振动方向与波动的传播方向也
14、不一定相同。,35,2.2 波的分类按波的类型分类:1.纵波:介质中质点的振动方向与波的传播方向相互平行的波,称为纵波(L)凡能承受拉伸或压缩应力的介质都能传播纵波。固体介质能承受拉伸或压缩应力,因此固体介质可以传播纵波。液体和气体虽然不能承受拉伸应力,但能承受压应力产生体积的压缩和膨胀,因此液体和气体也可以传播纵波。,36,纵波:质点的振动方向与波的传播方向一致.,特征:具有交替出现的密部和疏部.,例如:弹簧波、声波,2.横波:介质中质点的振动方向与波的传播方向互相垂直的波称为横波,用(S)或(T)表示。当介质质点受到交变的剪切应力作用时,产生切变形变,从而形成横波。故横波又称为切变波。只有
15、固体介质才能承受剪切应力,液体和气体介质不能承受剪切应力,因此横波只能在固体介质中传播,不能在液体和气体介质中传播。,38,横波:质点振动方向与波的传播方向相垂直.,特征:具有交替出现的波峰和波谷.,3.表面波:当介质表面受到交变应力作用时,产生沿介质表面传播的波,称为表面波,常用(R)表示。表面波在介质表面传播时,介质表面质点作椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于波的传播方向。椭圆运动可视为纵向振动与横向振动的合成,即纵波与横波的合成。因此表面波同横波一样只能在固体介质中传播,不能在液体或气体介质中传播。,40,表面波的能量随传播深度增加而迅速减弱。当传播深度超过两倍波长时,质点
16、的振幅就已经很小了。因此,一般认为,表面波探伤只能发现距工件表面两倍波长深度范围内的缺陷。,41,4.板波:在板厚与波长相当的薄板中传播的波,称为板波。根据质点的振动方向不同可将板波分为SH波和兰姆波。(1)SH波:水平偏振的横波在薄板中传播的波。薄板中各质点的振动方向平行于板面而垂直于波的传播方向,相当于固体介质表面中的横波。,42,(2)兰姆波:分为对称型(S型)和非对称型(A型)。对称型兰姆波:薄板中心质点作纵向振动,上下表面质点作椭圆运动,振动相位相反并对称于中心。非对称型兰姆波:薄板中心质点作横向振动,上下表面质点作椭圆运动,相位相同,不对称。,43,按波的形状分类:波的形状是指波阵
17、面的形状。波阵面:同一时刻,介质中振动相位相同的所有质点所连成的面称为波阵面。波前:某一时刻,波动所到达的空间各点所连成的面为波前。波线:波的传播方向称为波线。波前是最前面的波阵面,是波阵面的特例。任意时刻,波前只有一个,而波阵面却很多。在各向同性的介质中,波线恒垂直于波阵面或波前。,44,1.平面波:波阵面为相互平行的平面的波,其波源为一平面。尺寸远大于波长的刚性平面波源在各向同性的均匀介质中辐射的波,可视为平面波。平面波波束不扩散,平面波各质点振幅是一个常数,不随距离而变化。其波动方程为:,45,2.柱面波:波阵面为同轴圆柱面的波称为柱面波。柱面波的波源为一直线。长度远大于波长的线状波源在
18、各向同性的介质中辐射的波可视为柱面波。柱面波波束向四周扩散,柱面波各质点的振幅与距离的平方根成反比。其波动方程为:,46,3.球面波:波阵面为同心球面的波称为球面波。球面波的波源为一点。尺寸远小于波长的点波源在各向同性的介质中辐射的波可视为球面波。球面波波束向四面八方扩散,球面波各质点的振幅与距离成反比。其波动方程为:,47,实际应用的超声波探头中的波源近似活塞振动,其在各向同性介质中辐射的波称为活塞波。当距波源的距离足够大时,活塞波的声场特性类似于球面波。,48,按振动的持续时间分类1.连续波:波源持续不断的振动所辐射的波称为连续波。超声穿透法检测常采用连续波。,49,2.脉冲波:波源振动持
19、续时间很短(通常是微秒级,1s=10-6s)、间歇辐射的波称为脉冲波。目前超声检测中广泛采用的就是脉冲波一个脉冲波可分解为多个不同频率的谐振波的叠加。将一个复杂振动分解为谐振动的方法,称为频谱分析。,50,51,一个声脉冲的频谱可用专门的频谱分析仪来进行显示。其中人们关心的频谱特征量有:峰值频率、频带宽度和中心频率。峰值频率fp:幅度峰值所对应的频率值。频带宽度:峰值两侧幅度下降为峰值的一半时的频率值fl和fu之间的频率范围。(-6db带宽)脉冲越短,则频带越宽。中心频率fe:频率值fl和fu之算数平均值。,52,通常超声检验中使用的是窄频带、宽(长)脉冲的脉冲波。,53,54,2.3波的叠加
20、、干涉和衍射波的叠加与干涉1.波的叠加原理当几列波在同一介质中传播时,如果在空间某处相遇,则相遇处质点的振动是各列波引起振动的合成,在任意时刻该质点的位移是各列波引起位移的矢量和。几列波相遇后,仍保持自己原有的频率、波长、振动方向等特性并按原来的传播方向继续前进,好象在各自的途中没有遇到其他波一样,这就是波的迭加原理,又称波的独立性原理。,55,57,2.波的干涉波的干涉是在特定条件下波叠加所产生的现象。相遇时,介质中某些地方的振动相互加强,另一些地方的振动相互减弱或完全抵消的现象称为波的干涉现象。能产生干涉现象的波称为相干波。其波源称为相干波源。,当两相干波的波程差等于波长的整数倍时,二者相
21、互加强,合振动振幅最大。,当两相干波的波程差等于半波长的奇数倍时,二者相互抵消,合振动振幅最小.,水波干涉俯视图样,波的迭加原理是波的干涉现象的基础,波的干涉是波动的重要特征。在超声波探伤中,由于波的干涉,使超声波的波源附近出现声压极大、极小值。,63,2.3.3 惠更斯菲涅耳原理与波的衍射1.惠更斯-菲涅尔原理(16901815)波动是振动状态的传播,如果介质是连续的,那么介质中任何质点的振动都将引起邻近质点的振动,邻近质点的振动又会引起较远质点的振动,因此波动中任何质点都可以看作是新的波源,在其后任意时刻这些子波的包迹就决定了新的波阵面。利用惠更斯菲涅尔原理可以确定波前的几何形状和波的传播
22、方向,解释波的反射、折射和衍射等现象。,64,2.波的衍射(绕射):波在传播过程中遇到障碍物时,能绕过障碍物的边缘,在障碍物的阴影区内继续传播的现象。波的绕射与障碍物尺寸 Df 及波长 的相对大小有关。,65,当Df 时,波的绕射强,反射弱,缺陷回波很低,容易漏检。当Df 时,反射强,绕射弱,声波几乎全反射。超声检测灵敏度约为/2,这是一个重要原因。,66,超声波探伤的灵敏度约为/2例:对钢,频率f=2.5MHz,根据 C=f 纵波声速CL=5900m/s L=2.36 mm 横波声速CS=3230m/s S=1.29 mm 在频率相同的条件下,横波的检测灵敏度高于纵波的检测灵敏度.相同介质中
23、,提高工作频率可以检出较小的缺陷.,67,2.4超声波的传播速度超声波、次声波和声波的实质一样,都是机械波。它们在同一介质中的传播速度相同。超声波在介质中的传播速度与介质的弹性模量和密度有关。对特定的介质,弹性模量和密度为常数,故声速也是常数。不同的介质,有不同的声速。超声波波型不同时,介质弹性变形形式不同,声速也不一样。固体介质中的声速固体介质不仅能传播纵波,而且还可以传播横波和表面波等,但它们的声速是不相同的。此外介质尺寸的大小对声速也有一定的影响,无限大介质与细长棒中的声速也不一样。,68,1.无限大固体介质中的声速:当介质的尺寸远大于波长时,就可以视为无限大介质。无限大固体介质中纵波声
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无损 检测 超声波 二级 培训教材
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5742158.html