《数学归纳法及其应用举例.ppt》由会员分享,可在线阅读,更多相关《数学归纳法及其应用举例.ppt(18页珍藏版)》请在三一办公上搜索。
1、2.1数学归纳法及其应用举例(3),数学归纳法是一种证明与自然数有关的数学命题的重要方法。其格式主要有两个步骤、一个结论:(1)验证当n取第一个值n0(如 n0=1或2等)时结论正确;验证初始条件(2)假设n=k时结论正确,在假设之下,证明n=k+1时结论也正确;假设推理(3)由(1)、(2)得出结论.点题,找准起点奠基要稳,用上假设递推才真,写明结论才算完整,一、复习引入:,1、数学归纳法是一种完全归纳法,它是在可靠的基础上,利用命题自身具有的传递性,运用“有限”的手段,来解决“无限”的问题。2、它克服了完全归纳法的繁杂、不可行的缺点,又克服了不完全归纳法结论不可靠的不足,使我们认识到事情由
2、简到繁、由特殊到一般、由有限到无穷.,数学归纳法的核心思想,例1、是否存在常数a、b,使得等式:对一切正整数n都成立,并证明你的结论.,解:令n=1,2,并整理得,以下用数学归纳法证明:,(1)当n=1时,由上面解法知结论正确.,(1)数学归纳法证明等式问题:,二、数学归纳法应用举例:,(2)假设当n=k时结论正确,即:,则当n=k+1时,故当n=k+1时,结论也正确.,根据(1)、(2)知,对一切正整数n,结论正确.,例2、已知正数数列an中,前n项和为sn,且 用数学归纳法证明:,证:(1)当n=1时,=1,结论成立.,(2)假设当n=k时,结论成立,即,则当n=k+1时,故当n=k+1时
3、,结论也成立.,根据(1)、(2)知,对一切正整数n,结论都成立.,(2)数学归纳法证明整除问题:,例1、用数学归纳法证明:当n为正偶数时,xn-yn能被x+y整除.,证:(1)当n=2时,x2-y2=(x+y)(x-y),即能被x+y整除,故命 题成立.,(2)假设当n=2k时,命题成立,即x2k-y2k能被x+y整除.,则当n=2k+2时,有,都能被x+y整除.,故x2k+2-y2k+2能被x+y整除,即当n=2k+2时命题成立.,由(1)、(2)知原命题对一切正偶数均成立.,例2、用数学归纳法证明:能被8 整除.,证:(1)当n=1时,A1=5+2+1=8,命题显然成立.,(2)假设当n
4、=k时,Ak能被8整除,即 是8的倍数.,那么:,因为Ak是8的倍数,3k-1+1是偶数即4(3k-1+1)也是8的倍数,所以Ak+1也是8的倍数,即当n=k+1时,命题成立.,由(1)、(2)知对一切正整数n,An能被8整除.,例3、求证:x3n-1+x3n-2+1能被x2+x+1整除.,证:(1)当n=1时,x3n-1+x3n-2+1=x2+x+1,从而命题成立.,(2)假设当n=k时命题成立,即x3k-1+x3k-2+1能被 x2+x+1整除,则当n=k+1时,x3(k+1)-1+x3(k+1)-2+1=x3k+2+x3k+1+1,=x3(x3k-1+x3k-2+1)-x3+1=x3(x
5、3k-1+x3k-2+1)-(x-1)(x2+x+1),因为x3k-1+x3k-2+1、x2+x+1都能被x2+x+1整除,所以上式右边能被x2+x+1整除.,即当n=k+1时,命题成立.,根据(1)、(2)知,对一切正整数n,命题成立.,例1、平面内有n(n2)条直线,任何两条都不平行,任何三条不过同一点,问交点的个数 为多少?并证明.,当n=k+1时:第k+1条直线分别与前k条直线各交于一点,共增加k个点,,由1)、2)可知,对一切nN原命题均成立。,证明:1)n=2时:两条直线交点个数为1,而f(2)=2(2-1)=1,命题成立。,k+1条直线交点个数=f(k)+k=k(k-1)+k=k
6、(k-1+2)=k(k+1)=(k+1)(k+1)-1=f(k+1),即当n=k+1时命题仍成立。,2)假设n=k(kN,k2)时,k条直线交点个数为 f(k)=k(k-1),(3)数学归纳法证明几何问题:,练习:凸n边形有f(n)条对角线,则凸n+1边形的对角线 的条数f(n+1)=f(n)+_.,n-1,(4)数学归纳法证明不等式问题:,例1、用数学归纳法证明:,证:(1)当n=2时,左边=不等式 成立.,(2)假设当n=k(k2)时不等式成立,即有:,则当n=k+1时,我们有:,即当n=k+1时,不等式也成立.,由(1)、(2)原不等式对一切 都成立.,例2、证明不等式:,证:(1)当n
7、=1时,左边=1,右边=2,不等式显然成立.,(2)假设当n=k时不等式成立,即有:,则当n=k+1时,我们有:,即当n=k+1时,不等式也成立.,根据(1)、(2)可知,原不等式对一切正整数都 成立.,例3、求证:,证:(1)当n=1时,左边=,右边=,由于 故不等式成立.,(2)假设n=k()时命题成立,即,则当n=k+1时,即当n=k+1时,命题成立.,由(1)、(2)原不等式对一切 都成立.,例4、已知x 1,且x0,nN,n2求证:(1+x)n1+nx.,左边=(1+x)k+1=(1+x)k(1+x)(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x因为kx20,所以左边右边,即(1+x)k+11+(k+1)x这就是说,原不等式当n=k+1时也成立根据(1)和(2),原不等式对任何不小于2的自然数n都成立.,证明:(1)当n=2时,左(1x)2=1+2x+x2 x0,1+2x+x21+2x=右 n=1时不等式成立,(2)假设n=k时,不等式成立,即(1+x)k1+kx当n=k+1时,因为x 1,所以1+x0,于是,例5、已知 求证:.,证:(1)当n=2时,不等式成立.,(2)假设当n=k(k2)时不等式成立,即,则当n=k+1时,有:,即当n=k+1时,不等式成立.,由(1),(2)所证不等式对一切 都成立.,
链接地址:https://www.31ppt.com/p-5738366.html