数列复习(公开课精华).ppt
《数列复习(公开课精华).ppt》由会员分享,可在线阅读,更多相关《数列复习(公开课精华).ppt(51页珍藏版)》请在三一办公上搜索。
1、数列(复习课),数列,通项an,等差数列,前n项和Sn,等比数列,定义,通 项,前n项和,性 质,知识结构,一、知识回顾,仍成等差,仍成等比,等 差 数 列,等 比 数 列,定 义,通 项,通项推广,中 项,性 质,求和公式,关系式,适用所有数列,牛刀小试,在等差数列an中,a2=-2,a5=54,求a8=_.在等差数列an中,若a3+a4+a5+a6+a7=450,则a2+a8的值为_.在等差数列an中,a15=10,a45=90,则 a60=_.在等差数列an中,a1+a2=30,a3+a4=120,则a5+a6=_.,110,运用性质:an=am+(n-m)d或等差中项,运用性质:若n+
2、m=p+q则am+an=ap+aq,运用性质:从原数列中取出偶数项组成的新数列公差为2d.(可推广),运用性质:若an是公差为d的等差数列 cn是公差为d的等差数列,则数列an+cn是公差为d+d的等差数列。,180,130,210,在等比数列an中,a2=-2,a5=54,a8=.在等比数列an中,且an0,a2a4+2a3a5+a4a6=36,那么a3+a5=_.在等比数列an中,a15=10,a45=90,则 a60=_.在等比数列an中,a1+a2=30,a3+a4=120,则a5+a6=_.,-1458,6,270,480,或-270,牛刀小试,、等差、等比数列的设法及应用,1.三个
3、数成等差数列可设为,或者,,2.三个数成等比数列,则这三个数可设为,也可以设为,例1(1).已知三个数成等差数列,其和为15,其平方和为83,求此三个数.,析:设这三个数为,则,所求三个数分别为3,5,7,解得x5,d,或7,5,3.,2.,二、知识应用,根据具体问题的不同特点而选择不同设法。,例1(2):互不相等的三个数之积为,这三个数适当排列后可成为等比数列也可排成等差数列,求这三数排成的等差数列.,设这三个数为,则,即:,即:,与已知三数不等矛盾,即:,三个数为,或,即:,三个数为,或,综上:这三数排成的等差数列为:,、运用等差、等比数列的性质,例2(1)已知等差数列 满足,则(),(3
4、)已知在等差数列an的前n项中,前四项之和为21,后四项之和为67,前n项之和为286,试求数列的项数n.,析:,C,(2)已知等差数列 前 项和为30,前 项和为100,则前 项和为(),C,考题剖析,已知an为等差数列,a2+a8=12,,则a5等于()(A)4(B)5(C)6(D)7,解:由已知,由等差数列的性质,有a2+a8=2a5,所以,a56,选(C)。,点评本题直接利用等差数列的性质,由等差中项可得,属容易题。,例3.等差数列an中,a10,S9=S12,该数列前多少项的和最小?,分析:,如果等差数列an由负数递增到正数,或者由正数递减到负数,那么前n项和Sn有如下性质:,当a1
5、0,d0时,当a10,d0时,思路1:寻求通项,n取10或11时Sn取最小值,即:,易知,由于,、等差数列的最值问题,例.等差数列an中,a10,S9=S12,该数列前多少项的和最小?,分析:,等差数列an的通项an是关于n的一次式,前项和Sn是关于n的二次式(缺常数项).求等差数列的前n项和 Sn的最大最小值可用解决二次函数的最值问题的方法.,思路2:从函数的角度来分析数列问题.,设等差数列an的公差为d,则由题意得:,a10,d0,Sn有最小值.,又nN*,n=10或n=11时,Sn取最小值,即:,例3.等差数列an中,a10,S9=S12,该数列前多少项和最小?,分析:数列的图象是一群孤
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 复习 公开 精华
链接地址:https://www.31ppt.com/p-5738186.html