生化糖代谢.ppt
《生化糖代谢.ppt》由会员分享,可在线阅读,更多相关《生化糖代谢.ppt(119页珍藏版)》请在三一办公上搜索。
1、第六章 糖 代 谢 Chapter 6 Metabolism of carbohydrate,糖的无氧分解-糖酵解 糖的有氧氧化-三羧酸循环 磷酸戊糖途径 糖原的合成与分解 糖异生,教学目的:1.掌握糖酵解、三羧酸循环、磷酸戊糖途径的反应过程及生理意义 2.了解糖原的合成与分解代谢 3.掌握糖异生的概念及途径教学重点难点:糖酵解、三羧酸循环、磷酸戊糖途径的反应过程及生理意义;糖异生 教学课时:10,糖类是指多羟基醛或酮及其衍生物 一.糖类在生物体的生理功能主要有:氧化供能:糖类占人体全部供能量的70%。构成组织细胞的基本成分:*核糖:构成核酸*糖蛋白:凝血因子、免疫球蛋白等*糖脂:生物膜成分转
2、变为体内的其它成分*转变为脂肪*转变为非必需氨基酸,二.糖代谢的概况,血中葡萄糖,食物,主,糖异生,糖酵解,有氧氧化(CO2、H2O、ATP),磷酸戊糖途径(5-磷酸核糖、NADPH),糖原,缺氧,供氧充足,合成,分解,葡萄糖,丙酮酸,乳酸,乙醇,乙酰 CoA,6-磷酸葡萄糖,磷酸戊糖途径,糖酵解,(有氧),(无氧),(有氧或无氧),三.葡萄糖的分解代谢途径及定位,1、分解代谢途径,呼吸链氧化磷酸化,NADHFADH2,丙酮酸氧化三羧酸循环氧化磷酸化,磷酸戊糖途径糖酵解,2、分解代谢途径及定位,动物细胞,植物细胞,Section 1 糖酵解(glycolysis),糖酵解:是葡萄糖在无氧条件下
3、在组织细胞中降解成丙酮酸,并释放出能量生成ATP的过程。它是葡萄糖最初经历的酶促分解过程,也是葡萄糖分解代谢所经历的共同途径。,无氧酵解的全部反应过程在细胞溶胶(cytoplasm)中进行。从葡萄糖到丙酮酸的反应过程包括两个部分,可分为活化、裂解、放能三个阶段,十步反应。,一、糖酵解的反应过程,(一)准备,1.葡萄糖的活化(activation)己糖磷酸酯的生成:活化阶段是指葡萄糖经磷酸化和异构反应生成1,6-二磷酸果糖(FBP,FDP)的反应过程。该过程共由三步化学反应组成。,己糖激酶/葡萄糖激酶,磷酸己糖异构酶,磷酸果糖激酶-1,ATP,ADP,ATP,ADP,*,*,(1),(2),(3
4、),Mg2+,Mg2+,激酶:催化ATP分子与底物之间的磷酸基转移的酶称激酶,激酶一般需要Mg2+或Mn2+作为辅因子。Mg2+可以掩盖ATP/ADP分子中磷酸基氧原子的负电荷,使葡萄糖C-6/C-1位的羟基易于对ATP的位磷原子进行亲核攻击.机理:葡萄糖C-6/C-1位的羟基对ATP的位磷原子的亲核进攻击,葡萄糖磷酸化生成6-磷酸葡萄糖,ATP,glucose,已糖激酶,Mg2+,特点:此反应不可逆,消耗1个ATP.催化此反应的激酶有已糖激酶和葡萄糖激酶。,糖酵解过程的第一个限速酶,6-磷酸葡萄糖异构化转变为6-磷酸果糖,特点:反应的Go变化很小,反应可逆。磷酸葡萄糖异构酶将葡萄糖的羰基C由
5、C1移至C2,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的断裂,形成三碳物是必需的,fructose-6-phosphate,F-6-P,6-磷酸果糖再磷酸化生成1,6-二磷酸果糖,ATP,磷酸果糖激酶-1,Mg2+,特点:此反应在体内不可逆,消耗1个ATP。反应由磷酸果糖激酶1催化,是主要的调节位点,糖酵解过程的第二个限速酶,fructose-1,6-biphosphate,F-1,6-BP,2.裂解(lysis)磷酸丙糖的生成:,一分子F-1,6-BP裂解为两分子可以互变的磷酸丙糖(triose phosphate),,磷酸丙糖异构酶,醛缩酶,(4),(5),3-磷酸甘油醛和
6、磷酸二羟丙酮的生成,3-磷酸甘油醛,磷酸二羟丙酮,fructose-1,6-diphosphate(F-1,6-2P),醛缩酶,1,2,6,5,4,3,1,2,3,4,5,6,+,机理:由于C-2的羰基及C-4的羟基存在,1,6-二磷酸果糖分子发生 断裂,形成等长的三碳化合物特征:该反应Go=23.97kJ/mol,在热力学上不利,但是,由于F-1.6-2P的形成是放能的及甘油醛-3-磷酸后续氧化的放能性质,促使反应正向进行。在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行,磷酸丙糖的互换,dihydroxyacetone phosphate),glyceraldehyde 3-
7、phosphate,(二)贮能,3.放能(releasing energy)丙酮酸的生成:3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸和ATP.包括五步反应:,(6),(7),(8),ATP,ADP,磷酸甘油酸变位酶,3-磷酸甘油醛脱氢酶,磷酸甘油酸激酶,NAD+Pi,NADH+H+,烯醇化酶,丙酮酸激酶,*,ATP,ADP,自发,H2O,(10),3-磷酸甘油醛氧化为1,3-二磷酸甘油酸,1,3-diphosphoglycerate,3-磷酸甘油醛脱氢酶,glyceraldehyde 3-phosphate,糖酵解中唯一的脱氢反应,特征:由3-磷酸甘油醛脱氢酶催化,在无机磷酸的参
8、与下以NAD+作为电子受体,3-磷酸甘油醛氧化脱氢生成1,3-二磷酸甘油酸和NADH+H+。醛基转变成超高能量的酰基磷酸,1,3-二磷酸甘油酸转变为3-磷酸甘油酸,3-磷酸甘油酸激酶,3-phosphoglycerate),1,3diphosphoglycerate,OPO 3 2-,ADP,ATP,这是糖酵解中第一次底物水平磷酸化反应,特征:在磷酸甘油酸激酶的作用下,将高能磷酰基转给ADP形成ATP。这是酵解中第一次产生ATP的反应,反应是可逆的,3-磷酸甘油酸转变为2-磷酸甘油酸,3-phosphoglycerate,磷酸甘油酸变位酶,2-phosphoglycerate,特征:变位酶是一
9、种催化分子内化学基团移位的酶.磷酸甘油酸变位酶催化3-磷酸甘油酸和2-磷酸甘油酸之间的磷酸基团位置的移动,分子内重排.,2-磷酸甘油酸转变为磷酸烯醇式丙酮酸,phosphoenolpyruvate,2-phosphoglycerate,氟化物能与Mg2+络合而抑制此酶活性,特征:烯醇化酶(需要Mg2+的活化)催化2-磷酸甘油酸中的a、位脱去水形成磷酸烯醇式丙酮酸。烯醇磷酯键具有很高的磷酸基转移潜能。,a,H2O,(10)磷酸烯醇式丙酮酸转变为丙酮酸,丙酮酸激酶(PK),phosphoenolpyruvate,enolpyruvate,糖酵解过程的第三个限速酶,Mg2+,K+,特征:丙酮酸激酶催
10、化磷酸基从磷酸烯醇式丙酮酸转移给ADP,生成烯醇式丙酮酸和ATP,反应是不可逆的这是酵解中第二个底物水平磷酸化反应.,enolpyruvate,(10),6-磷酸葡萄糖,6-磷酸果糖,1,6-二磷酸果糖,3-磷酸甘油醛磷酸二羟丙酮,21,3-二磷酸甘油酸,23-磷酸甘油酸,22-磷酸甘油酸,2磷酸烯醇丙酮酸,2丙酮酸,第一阶段,第二阶段,第三阶段,葡萄糖,葡萄糖的活化,磷酸己糖的裂解,2-磷酸甘油酸和ATP生成,丙酮酸和ATP的生成,一、糖酵解过程,第一部分,(六碳糖三碳糖),第二部分,-1ATP,-1ATP,2 1NADH,2 1ATP,2 1ATP,二、途径化学计量和生物学意义,糖酵解代谢
11、途径可将一分子葡萄糖分解为两分子丙酮酸,净生成两分子ATP。总反应式:C6H12O6+2NAD+2ADP+2Pi2C3H4O3+2NADH+2H+2ATP+2H2O糖酵解代谢途径有三个关键酶,即己糖激酶(葡萄糖激酶)、磷酸果糖激酶-1、丙酮酸激酶。,二、糖酵解的调节,糖酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变构调节。1.己糖激酶或葡萄糖激酶:已糖激酶:专一性不强,在组织细胞中广泛存在,可催化Glc、Man(甘露糖)磷酸化。被产物G-6-P强烈地别构抑制葡萄糖激酶:只能催化Glc磷酸化,仅在肝脏和胰腺细胞存在,维持血糖平衡,不被G-6-P抑制。是诱导酶,胰岛素可诱导其基因转录,促
12、进酶的合成。当肝细胞中Glc浓度5mmol/L,肝中的Glc激酶被激活,Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞,是肝脏调节葡萄糖吸收的主要的关键酶。无产物反馈抑制,己糖激酶及葡萄糖激酶的变构剂,己糖激酶hexokinase,葡萄糖激酶glucokinase,G-6-P,长链脂酰CoA,2.6-磷酸果糖激酶-1:6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素。,6-磷酸果糖激酶-16-phosphofructokinase-1,ATP柠檬酸,ADP、AMP1,6-双磷酸果糖2,6-双磷酸果糖,3.丙酮酸激酶:,丙酮酸激酶pyruvate kinase,ATP丙
13、氨酸(肝),1,6-双磷酸果糖,三、糖酵解的生理意义,1.是葡萄糖在生物体内进行有氧或无氧分解的共同途径 在无氧和缺氧条件下,作为糖分解供能的补充途径,生物体获得生命活动所需要的能量。在有氧条件下,作为某些组织细胞主要的供能途径。2.形成多种重要的中间产物,为氨基酸、脂类合成提供碳骨架;3.为肌肉收缩迅速提供能量 剧烈运动时:肌肉内ATP含量很低,即使氧不缺乏,葡萄 糖进行有氧氧化的过程比糖酵解长得多,来不及满足需要,糖酵解为肌肉 收缩迅速提供能量,四、丙酮酸的去路,(有氧),(无氧),丙酮酸有3种主要的去路:1、在大多数情况下,丙酮酸可以通过氧化脱羧形成乙酰CoA,然后乙酰CoA进入柠檬酸循
14、环;,2、在某些微生物中,丙酮酸可以转化为乙醇,这一过程称之酒精发酵;3、在某些环境条件下(如缺氧),它可以还原为乳酸。,1、丙酮酸 乳酸(乳酸发酵),在无氧条件下,利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+,以确保反应的继续进行。,乳酸脱氢酶,NAD+,NADH+H+,乳酸可以通过血液进入肝、肾等组织内,重新转变成丙酮酸,再合成葡萄糖和肝糖元,或进入三羧酸循环氧化。,葡萄糖,EMP,COOHC=O,CH3,丙酮酸,2、丙酮酸 乙醇(酒精发酵),酵母在无氧的条件下,将葡萄糖转变成乙醇,这是酿酒和发酵法生产乙醇的基本过程,称为生醇发酵。酵母中含有多种酶系,其中丙酮酸
15、脱羧酶(不存在于动物细胞中)催化丙酮酸脱羧产生乙醛,乙醛在醇脱氢酶催化下被NADH还原成乙醇。,丙酮酸脱羧酶,醇脱氢酶,3、丙酮酸的有氧氧化及葡萄糖的有氧分解,(EPM),葡萄糖,丙酮酸脱氢酶系,Section 2 糖的有氧氧化(aerobic oxidation),葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O,并释放出大量能量的过程称为葡萄糖的有氧氧化。,绝大多数组织细胞通过葡萄糖的有氧氧化途径获得能量。此代谢过程在细胞胞液和线粒体(cytoplasm and mitochondrion)内进行。一分子葡萄糖(glucose)彻底氧化分解可产生30/32分子ATP。,一、有氧氧化的反应过
16、程,葡萄糖的有氧氧化代谢途径可分为四个阶段:糖酵解产生丙酮酸(2丙酮酸、2ATP、2NADH)丙酮酸氧化脱羧生成乙酰CoA 三羧酸循环(CO2、H2O、ATP、NADH)呼吸链氧化磷酸化(NADH-ATP)原核生物:阶段在胞质中真核生物:在胞质中,在线粒体中,(一)葡萄糖经酵解途径生成丙酮酸:,此阶段在细胞胞液(cytoplasm)中进行,一分子葡萄糖(glucose)分解后净生成2分子丙酮酸(pyruvate),2分子ATP,和2分子(NADH+H+)。两分子(NADH+H+)在有氧条件下可进入线粒体(mitochondrion)进行氧化磷酸化,共可得到21.5或者22.5分子ATP。故第一
17、阶段可净生成5或7分子ATP。,(二)丙酮酸氧化脱羧生成乙酰CoA:,丙酮酸进入线粒体(mitochondrion),在丙酮酸脱氢酶系(pyruvate dehydrogenase complex)的催化下氧化脱羧生成乙酰CoA(acetyl CoA)。,丙酮酸脱氢酶系,NAD+HSCoA,NADH+H+CO2,*,一分子葡萄糖经糖酵解产生两分子丙酮酸(pyruvate),故可生成两分子乙酰CoA(acetyl CoA),两分子CO2和两分子(NADH+H+),可生成22.5分子ATP。反应为不可逆;丙酮酸脱氢酶系(pyruvate dehydrogenase complex)是葡萄糖有氧氧化
18、途径的关键酶之一。,1.丙酮酸脱氢酶系组成:由丙酮酸脱羧酶(E1),二氢硫辛酸乙酰基转移酶(E2),二氢硫辛酸脱氢酶(E3)三种酶单体构成。有六种辅助因子:TPP,硫辛酸,NAD+,FAD,HSCoA和Mg2+。这些酶以非共价键结合在一起,碱性条件下,复合体解离成相应的亚单位,中性时重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,多酶复合体有利于高效催化反应及调节酶在反应中的活性。,2、反应步骤(1)丙酮酸脱羧形成羟乙基-TPP(2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基(3)E2将乙酰基转给CoA,生成乙酰-CoA(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生化 代谢
链接地址:https://www.31ppt.com/p-5730941.html