微生物的生长繁殖及其控制.ppt
《微生物的生长繁殖及其控制.ppt》由会员分享,可在线阅读,更多相关《微生物的生长繁殖及其控制.ppt(128页珍藏版)》请在三一办公上搜索。
1、第六章微生物生长繁殖及其控制,Microbial growth and its control,一个微生物细胞,群体的生长,合适的外界条件,吸收营养物质,进行代谢,同化作用异化作用,个体的生长原生质的总量(重量、体积、大小)不断增加,各细胞组分是按照恰当的比例增长,达到一定程度后就会繁殖,引起个体数目的增加,群体内各个体的进一步生长,生长微生物细胞吸收营养物质,进行新陈代谢,当同化作用异化作用时,生命个体的重量和体积不断增大的过程。繁殖生命个体生长到一定阶段,通过特定方式产生新的生命个体,即引起生命个体数量增加的生物学过程。个体生长微生物细胞个体吸收营养物质,进行新陈代谢,原生质与细胞组分的增
2、加为个体生长。群体生长群体中个体数目的增加。可以用重量、体积、密度或浓度来衡量。个体生长个体繁殖 群体生长 群体生长=个体生长+个体繁殖,第一节 细菌的生长,第二节 细菌的群体生长繁殖,单细胞微生物群体生长是以群体中细胞数量的增加来表示的 由一个细胞分裂成为两个细胞的时间间隔称为世代,一个世代所需的时间就是代时(eneration time,G),代时也就是群体细胞数目扩大一倍所需 时间,有时也称为倍增时间。,一、细菌的群体生长规律,细菌生长曲线:把一定的细菌细胞接种在恒定容积的液体培养基中在适宜条件下培养,定时取样测定细胞数目,以细菌细胞数的对数为纵坐标,以生长时间作横坐标绘制而成的曲线。,
3、生长曲线代表了细菌在新的环境中从开始生长、分裂直至死亡的整个动态变化过程。每种细菌都有各自的典型生长曲线,但它们的生长过程却有着共同的规律性。一般可以将生长曲线划分为四个时期。,将少量单细胞的纯培养,接种到一恒定容积的新鲜液体培养基中,在适宜条件下培养,每隔一定时间取样,测菌细胞数目。以培养时间为横坐标,以细菌增长数目的对数为纵坐标,绘制所得的曲线。,生长曲线的制作,典型的生长曲线(Growth curve),延滞期,对数期,稳定期,衰亡期,1.现象:活菌数没增加,曲线平行于横轴。2.特点:生长速率常数=0细胞形态变大或增长细胞内RNA特别rRNA含量增高,原生质嗜碱性增强合成代谢活跃(核糖体
4、、酶类、ATP合成加快),易产生诱导酶对外界不良条件敏感,(如氯化钠浓度、温度、抗生素等化学药物)3.原因:适应新的环境条件,合成新的酶,积累必要的中间产物:,(1)延滞期(lag phase,停滞期、调整期、适应期),菌种:繁殖速度较快的菌种的延迟期一般较短;接种物菌龄:用对数生长期的菌种接种时,其延迟期较短,甚至检查不到延迟期;接种量:一般来说,接种量增大可缩短甚至消除延迟期(发酵工业上一般采用1/10的接种量);培养基成分:在营养成分丰富的天然培养基上生长的延滞期比在合成培养基上生长时短;接种后培养基成分有较大变化时,会使延滞期加长,所以发酵工业上尽量使发酵培养基的成分与种子培养基接近。
5、,影响延迟期长短的因素:,认识延迟期的特点及形成原因对实践的指导意义:,在发酵工业上需设法尽量缩短延迟期;采取的缩短lag phase 的措施有:通过遗传学方法改变种的遗传特性使延迟期缩短;采用对数生长期的健壮菌种;尽量使接种前后所使用的培养基组成成分相差不要太大;适当扩大接种量(群体优势-适应性增强)。,(2)对数期(logarithmic phase,指数期),现象:细胞数目以几何级数增加,其对数与时间呈直线关系。特点:生长速率常数最大,即代时最短;细胞进行平衡生长,菌体大小、形态、生理特征等比较一致;代谢最旺盛;细胞对理化因素较敏感3.影响因素:菌种、营养成分及浓度、温度,营养物浓度与对
6、数期生长速率和产量,作用方式:影响微生物的生长速率和总生长量生长限制因子:凡是处于较低浓度范围内,可影响生长速率和菌体产量的营养物就称生长限制因子,细胞数或菌体量,应用意义:由于此时期的菌种比较健壮,增殖噬菌体的最适菌龄;生产上用作接种的最佳菌龄;发酵工业上尽量延长该期,以达到较高的菌体密度食品工业上尽量使有害微生物不能进入此期是生理代谢及遗传研究或进行染色、形态观察等的良好材料。,(3)稳定期(stationary phase,恒定期或最高生长期),1、特点:新增殖的细胞数与老细胞的死亡数几乎相等,微生物的生长速率处于动态平衡,培养物中的细胞数目达到最高值。细胞分裂速度下降,开始积累内含物,
7、产芽孢的细菌开始产芽孢。此时期的微生物开始合成次生代谢产物,对于发酵生产来说,一般在稳定期的后期产物积累达到高峰,是最佳的收获时期。2、产生原因:营养物尤其是生长限制因子的耗尽;营养物的比例失调,如碳氮比不合适;有害代谢废物的积累(酸、醇、毒素等);物化条件(pH、氧化还原势等)不合适;,应用意义:1)发酵生产形成的重要时期(抗生素、氨基酸等),生产上应尽量延长此期,提高产量,措施如下:补充营养物质(补料)调pH 调整温度 2)稳定期细胞数目及产物积累达到最高。,(4)衰亡期(decline phase),特点:细胞死亡数增加,死亡数大大超过新增殖的细胞数,群体中的活菌数目急剧下降,出现“负生
8、长”。细胞内颗粒更明显,细胞出现多形态、畸形或衰退形,芽孢开始释放。因菌体本身产生的酶及代谢产物的作用,使菌体死亡、自溶等,发生自溶的菌生长曲线表现为向下跌落的趋势。衰亡期比其他各时期时间长,它的长短也与菌种和环境条件有关。产生原因:生长条件的进一步恶化,使细胞内的分解代谢大大超过合成代谢,继而导致菌体的死亡,同步生长的概念:一个细胞群体中各个细胞都在同一时间进行分裂的状态,称为同步生长(synchronous growth),进行同步分裂的细胞称为同步细胞。同步培养:是使群体中不同步的细胞转变成能同时进行生长或分裂的群体细胞。同步细胞群体在任何一时刻都处在细胞周期的同一相,彼此间形态、生化特
9、征都很一致,因而是细胞学、生理学和生物化学等研究的良好材料。,二、同步培养,获得同步生长的方法:,获得同步生长的方法主要有两类:环境条件诱导法:变换温度、光线、培养基等。造成与正常细胞周期不同的周期变化。选择法:选择性过滤、梯度离心。物理方法,随机选择,不影响细胞代谢。,Helmstetter-Cummings 法,原理:一些细菌细胞会紧紧粘附于硝酸纤维微孔滤膜上。步骤:菌悬液通过微孔滤膜,细胞吸附其上;反置滤膜,以新鲜培养液通过滤膜,洗掉浮游细胞;除去起始洗脱液后就可以得到刚刚分裂下来的新生细胞,即为同步培养。,三、连续培养(continuous culture),分批培养(batch cu
10、lture):将微生物置于一定容积的定量的培养基中培养,培养基一次性加入。不再补充和更换,最后一次性收获。连续培养(continuous culture):在微生物培养的过程中,不断地供给新鲜的营养物质,同时排除含菌体及代谢产物的发酵液,让培养的微生物长时间地处于对数生长期,以利于微生物的增殖速度和代谢活性处于某种稳定状态。连续培养理论基础:由于对典型生长曲线中稳定期到来原因的认识,采取相应有效措施推迟其来临,从而发展出现在的连续培养技术。,原理:当微生物在单批培养方式下生长达到对数期后期时,一方面以一定的速度流进新鲜培养基并搅拌,另一方面以溢流方式流出培养液,使培养物达到动态平衡,其中的微生
11、物就能长期保持对数期的平衡生长状态和稳定的生长速率。,连续培养原理,连续培养器,按控制方式分按培养器的级数分按细胞状态分按用途分,内控制(控制菌体密度):恒浊器外控制(控制培养液流速、以控制生长速率):恒化器,单级连续培养器多级连续培养器,一般连续培养器固定化细胞连续培养器,实验室科研用:连续培养器发酵生产用:连续发酵罐,连续培养器,概念:通过调节培养基流速,使培养液浊度保持恒定的连续培养方法。原理:通过调节新鲜培养基流入的速度和培养物流出的速度来维持菌浓度不变,即浊度不变。主要采用恒浊器,当浊度高时,使新鲜培养基的流速加快,浊度降低,则减慢培养基的流速。特点:基质过量,微生物始终以最高速率进
12、行生长,并可在允许范围内控制不同的菌体密度;但工艺复杂,烦琐。,连续培养技术恒浊培养,使用范围:用于生产大量菌体、生产与菌体生长相平行的某些代谢产物,如乳酸、乙醇等。,连续培养技术恒化连续培养,概念:以恒定流速使营养物质浓度恒定而保持细菌生长速率恒定的方法。原理:通过控制某一种营养物浓度(如碳、氮源、生长因子等),使其始终成为生长限制因子,而达到控制培养液流速保持不变,并使微生物始终在低于其最高生长速率条件下进行生长繁殖。特点:维持营养成分的亚适量,控制微生物生长速率。菌体生长速率恒定,菌体均一、密度稳定,产量低于最高菌体产量。应用范围:实验室科学研究,恒化器Chemostat 或bactog
13、en,恒浊器与恒化器的比较,生长与代谢产物的形成存在两种类型,微生物发酵形成产物的过程与微生物细胞生长的过程并不总是一致的。一般认为:,连续发酵(continuous fermentation),连续培养在生产上的应用,相对于单批发酵而言。优点:高效,简化了操作装料、灭菌、出料、清洗发酵罐等单元操作;自控:便于利用各种仪表进行自动控制;产品质量稳定节约大量动力、人力、水和蒸汽,且使水、汽、电的负荷均衡合理。缺点:菌种易于退化;易于遭到杂菌污染;营养物利用率低于单批培养。连续发酵的生产时间受以上因素限制,一般只能维持数月 1年。,第三节 真菌的生长与繁殖,一、丝状真菌的生长繁殖(一)无性孢子,霉
14、菌的繁殖方式,):,1.孢囊孢子(sporangiospore),形成特征:形成于菌丝的特化结构孢子囊内。孢子形态:近圆形。举例:根霉、毛霉。,2.分生孢子(Canidinm):,形成特征:由分生孢子梗顶端细胞特化而成的单个或簇生的孢子。孢子形态:极多样。举例:曲霉、青霉。,2.分生孢子(Canidinm):,无性孢子结构复杂的子实体,3、节孢子(arthrospore,又称粉孢子),形成特征:由菌丝断裂而成。孢子形态:常呈成串短柱状。举例:白地霉。,4.厚垣孢子(Chlamydospore),形成特征:部分菌丝细胞质浓缩、变圆,周围生出厚壁而成。孢子形态:圆形、柱形等。举例:总状毛霉。,(二
15、)有性繁殖,(1)过程 两相邻的不同质的(细胞)菌丝碰到一起形成原配子囊。质配 接触处的细胞壁溶解,两细胞质融合在一起核配 形成二倍体结合子核减数分裂(R)恢复核的单倍体状态有些霉菌核配后,双倍体核进行减数分裂形成单倍体有性孢子,有的霉菌核配合后,二倍体的结合子直接发育形成有性孢子(二倍体的),萌发时才进行减数分裂。(2)方式,有性结构及其形态特征:由大小不同的配子囊结合后发育而成。小配子囊称雄器;大配子囊称藏卵器。所属分类地位:卵菌纲。,1.卵孢子(oospore),2.接合孢子(zygospore):,有性结构及其形态特征:是由菌丝生出的结构大小相似、形态相同或略有不同两个配子囊接合后发育
16、而成。所属分类地位:接合菌纲,接合孢子形成过程:,根据产生接合孢子的菌丝来源或亲和力不同,可将结合分为分为两种情况:同宗配合(Hemothallism):是单一的孢子囊孢子萌发后形成的菌丝,甚至同一菌丝的分枝相互接触,而形成接合孢子的过程。异宗配合(Heterothallism):是不同菌系的菌丝相遇后,才能形成接合孢子,这两种有亲和力的菌系在形态上并无区别。,同宗配合与异宗配合:,3.子囊孢子(ascospore):,有性结构及其形态特征:在子囊中形成。子囊:两性细胞接触以后形成的囊状结构。子囊的形成有两种方式:两个营养细胞直接交配而成,其外面无菌丝包裹;从一个特殊的、来自产囊体菌丝(称为产
17、囊丝)的结构上产生子囊,多个子囊外面被菌丝包围形成子实体,称为子囊果。所属分类地位:子囊菌纲,子囊果的形状,子囊果(Ascocarp):子实体(一种有性结构),多个子囊外部由菌丝体组成共同的保护组织结构,称为子囊果。子囊包在其中。子囊果有三种类型:,闭囊壳(Cleistothecium),子囊壳(Perthecium),子囊盘(Apothecium),4.担孢子(basidiospore),有性结构及其形态特征:担子菌所特有,经两性细胞核配合后产生的外生孢子。因着生在担子上而得名。所属分类地位:担子菌纲,丝状微生物的群体生长,丝状微生物的纯培养采用孢子接种,在液体培养基中震荡培养或深层通气加搅
18、拌培养,菌丝体通过断裂繁殖不形成产孢结构。可以用菌丝干重作为衡量生长的指标,即以时间为横坐标,以菌丝干重为纵坐标,绘制生长曲线。,可分为三个阶段:生长停滞期、迅速生长期、衰退期,1、生长停滞期:造成生长停滞的原因一是孢子萌发前真正的停滞状态,另一种是生长已经开始,但还无法测定。2、迅速生长期:菌丝体干重迅速增加,其立方根与时间呈直线关系,菌丝干重不以几何级数增加,没有对数生长期。生长主要表现在菌丝尖端的伸长和出现分支、断裂等,此时期的菌体呼吸强度达到高峰,有的开始积累代谢产物。3、衰退期:菌丝体干重下降,到一定时期不再变化。大多数次级代谢产物在此期合成,大多数细胞都出现大的空泡。有些菌丝体还会
19、发生自溶菌丝体,这与菌种和培养条件有关。,丝状微生物的群体生长,二、酵母菌的生长繁殖,根据能否进行有性繁殖,可将酵母菌分为:假酵母:只有无性繁殖过程。真酵母:既有无性繁殖,又有有性繁殖过程。,1、芽殖,出芽方式:多边出芽、两端出芽、三边出芽、单边出芽。环境适宜时,可出现假菌丝,芽殖过程:母细胞形成小突起(AD)核裂(EG)原生质分配(HI)新膜形成(JK)形成新细胞壁(L),出芽痕和诞生痕:酵母出芽繁殖时,子细胞与母细胞分离,在子、母细胞壁上都会留下痕迹。在母细胞的细胞壁上出芽并与子细胞分开的位点称出芽痕,子细胞细胞壁上的位点称诞生痕。由于多重出芽,致使酵母细胞表面有多个小突起。,芽 痕,Br
20、ead Yeast with Bud,假菌丝:,Saccharomyces cerevisiae的芽殖过程,有的酵母菌进行芽殖后,长大的子细胞不与母细胞立即分离,并继续出芽,细胞成串排列,这种菌丝状的细胞串就称为假菌丝。假菌丝的各细胞间仅以狭小的面积相连,呈藕节状。而霉菌的菌丝为真菌丝,即相连细胞间的横隔面积与细胞直径一致,呈竹节状的细胞串,称为真菌丝。,借细胞横分裂法繁殖,与细菌类似.如Schizosaccharomyces octosporus(八孢裂殖酵母)。进行裂殖的酵母菌种类较少.,2、裂 殖;,有性繁殖的过程:当酵母菌发展到一定阶段,两性别不同的细胞接近各伸出突起而相接触,接触出的
21、细胞壁溶解,两细胞的细胞质通过形成的管道融合,两单倍体的核移到融合管中形成二倍体核,在合适的条件下,二倍体细胞核进行减数分裂性成子囊,子囊内的单倍体细胞便为子囊孢子,在适宜条件下可萌发成单倍体细胞。即两性别不同的单倍体细胞相互结合质配核配二倍体营养细胞子囊形成成熟后囊壁破裂放出子囊孢子萌发成单倍体细胞。,有性生殖,有性生殖,即两性别不同的单倍体细胞相互结合质配核配二倍体营养细胞子囊形成成熟后囊壁破裂放出子囊孢子萌发成单倍体细胞。,一、环境对微生物生长的影响 适宜环境 促进微生物生长发育 不适宜环境 微生物受抑制或突变 恶劣环境 微生物死亡,第三节 环境对生长的影响及生长的测定,影响微生物生长的
22、外界因素很多,有许多物理化学条件。,温度是影响微生物生长的最重要因素之一。温度对微生物的影响具体表现在:影响酶活性,温度变化影响酶促反应速率,最终影响细胞合成。影响细胞膜的流动性,温度高,流动性大,有利于物质的运输,温度低,流动性降低,不利于物质运输,因此,温度变化影响营养物质的吸收与代谢产物的分泌。影响物质的溶解度,对生长有影响。,(一)温度对微生物生长的影响,微生物的生长温度生长温度三基点,即微生物的最低生长温度、最适生长温度、最高生长温度。,微生物生长温度类型,根据微生物的最适生长温度的不同,将微生物划为低温型微生物(嗜冷微生物)中温型微生物(嗜温微生物)高温型微生物(嗜热微生物),低温
23、型微生物(嗜冷微生物):最适生长温度在520,主要分布在地球的两极、冷泉、深海、冷冻场所及冷藏食品中。例:假单孢菌中的某些嗜冷菌在低温下生长,常引起冷藏食品的腐败。嗜冷微生物在低温下生长的机理,目前还不清楚,据推测有两种原因:它们体内的酶能在低温下有效地催化,在高温下酶活丧失细胞膜中的不饱和脂肪酸含量高,低温下也能保持半流动状态,可以进行物质的传递。,中温型微生物(嗜温微生物):最适生长温度为2040,大多数微生物属于此类。室温型主要为腐生或植物寄生,在植物或土壤中。体温型主要为寄生,在人和动物体内。,高温型微生物(嗜热微生物):最适生长温度为50 60,主要分布在温泉、堆肥和土壤中。在高温下
24、能生长的原因:酶蛋白以及核糖体有较强的抗热性核酸具有较高的热稳定性(核酸中G+C含量高(tRNA),可提供形成 氢键,增加热稳定性)。细胞膜中饱和脂肪酸含量高,较高温度下能维持正常的液晶状态。高温微生物的特点:生长速度快,合成大分子迅速,可及时修复高温对其造成的分子损伤。耐高温菌具应用优势:在减少能源消耗、减少染菌、缩短发酵周期等方面具重要意义。,1、高温对微生物的影响高温下蛋白质不可逆变性,膜受热出现小孔,破坏细胞结构(溶菌)。微生物对热的耐受力与以下因素有关:(1)微生物种类及发育阶段 嗜热菌比其它类型的菌体抗热有芽孢的细菌比无芽孢的菌抗热微生物的繁殖结构比营养结构抗热性强老龄菌比幼龄菌抗
25、热,高温与低温对微生物的影响,(2)微生物对热的耐受力还受环境条件的影响 与培养基的营养成分有关 培养基中蛋白质含量高时比较耐热.与pH 有关 pH适宜时不易死亡,pH不适宜时,容易死亡.与水分有关 含水量大时容易死亡,含水量小时不容易死亡.与含菌量有关 含菌量高,抗热性增强,含菌量低,抗热性差。与热处理时间有关 热处理时间长,微生物易死亡。,当环境温度低于微生物的最适生长温度时,微生物的生长繁殖停止,当微生物的原生质结构并未破坏时,不会很快造成死亡并能在较长时间内保持活力,当温度提高时,可以恢复正常的生命活动。低温保藏菌种就是利用这个原理。一些细菌、酵母菌和霉菌的琼脂斜面菌种通常可以长时间地
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微生物 生长 繁殖 及其 控制
链接地址:https://www.31ppt.com/p-5726881.html