二次根式教学实录.doc
《二次根式教学实录.doc》由会员分享,可在线阅读,更多相关《二次根式教学实录.doc(39页珍藏版)》请在三一办公上搜索。
1、二次根式教学实录 二次根式教学实录1一、教学目标1.掌握二次根式的性质2.能够利用二次根式的性质化简二次根式3.通过本节的学习渗透分类讨论的数学思想和方法二、教学设计对比、归纳、总结三、重点和难点1.重点:理解并掌握二次根式的性质2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习对比,归纳整理,应用提高,以学生活动为主七、教学步骤(一)教学过程【复习引入】1.求值 、 、 、 求值 、 、 、 结论:当 时, ;当 时, .2.求值 、 结论:当 时,式子有意义, ,对于 ,
2、不能为负数.3.求值 、 结论:当 时, .问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.【讲解新课】提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.例1 化简:(1) ; (2) .解:(略).注: 可看作 ,把 先写为 ;可看作 ,把 先写为 .例2 化简: .分析:底数 是非负数还是负数将直接影响结果,这时
3、要注意条件,由条件 ,可得 . .解:(略).例3 化简下列各式:(1) ( ); (2) ( );(3) ( ); (4) ( ).解:(1) .(2) ,即 .(3) ,即 .(4) , ,即 . .注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.(二)随堂练习1.求值:(1) ;(2) ;(3) ( );(4) ;(5) .解:(1) .(2) .(3) .(4) .(5) .注: ,学生易与 相混淆.2.化简:(1) ;(2)
4、 ;(3) ;(4) ( ); (5) ( ).解:(1) .(2) .(3) .(4) .(5) .(三)总结、扩展对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.(四)布置作业教材P213中1(2)、(3);2(1)、(2).(五)板书设计二次根式教学实录2教学建议本节的重点有两个:同类二次根式的概念二次根式加减运算的方法本节的主要内容是讲解,而的关键是把二次根式化为最简二次根式,再把同类二次根式合并.运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点.本节的难点 运算首先是化简
5、,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是学生初次接触,在运算过程中容易出现各种各样的错误,因此熟练掌握运算是本节的难点.本节的主要内容是讲解,而的关键是把二次根式化为最简二次根式,再把同类二次根式合并.(1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和.两种处理方法各有优劣,教师在教学过程 中可根据学生的实
6、际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁.(2)在教材例1的教学中,教师可以根据学生情况进行细分处理,例如分成几个小问题:把被开方数都是整数的放在一个小题中,把被开方数都是分数的放在一个小题中,把被开方数带有简单字母的放在一个小题中,把字母次数略高于2的放在一个小题中,使问题的解决有一个由浅入深的渐进过程,便于学生参与其中,也容易使学生获得成就感.(3)在组织学生进行教学中,同样将例题细分成几个层次进行教学,例如:不需要化简能直接进行相加减的,需要化简但被开方数都是简单整数的,被开方数都是有理数但既有整数又有分数的,被开方数含有字母的,等等.(4)在二次根式加减法的组织教学中
7、,虽然教材已经不要求二次根式加减法的法则,但可以组织学生自己总结法则,既有利于学生的参与,又能提高学生的观察、分析和归纳能力.(5)在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:不是最简二次根式就不是同类二次根式,该化简的没有化简,或化简的不正确,该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况.教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固.教学设计示例1一、素质教育目标(一)知识教学点1.使学生了解最简二次根式的概念和同类二次根式的概念.2.能判断二次根式中的同类二次根式.3.会用同类二次根式进行二次根式的加减.(二)能力训练
8、点通过本节的学习,培养学生的思维能力并提高学生的运算能力.(三)德育渗透点从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.(四)美育渗透点通过二次根式的加减,渗透二次根式化简合并后的形式简单美.二、学法引导1.教师教法 引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.2.学生学法 通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.三、重点难点疑点及解决办法1.教学重点 运算.2.教学难点 二次根式的化简.3.疑点及解决办法 的关键在于二次根式的化简,在适当复习二次根
9、的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.四、课时安排2课时五、教具学具准备投影片六、师生互动活动设计1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.2.教师通过例题的示范让学生了解什么是,并引入同类的二次根式的定义.3.再通过较复杂
10、的计算,引导学生小结归纳出的法则.4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.七、教学步骤(-)明确目标学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究.(二)整体感知同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.第一课时(-)教学过程【复习引入
11、】什么样的二次根式叫做最简二次根式?(由学生回答)与 的形式与实质是什么?可以化简为 .继续提问: ,可以化简吗?,可以化简吗?这就是本节课研究的内容.【讲解新课】1.复习整式的加减运算计算:(1) ;(2) ;(3) .小结:整式的加减法,实质上就是去括号和合并同类项的运算.2.例题(1)计算 .解: .(2)计算 .解: .小结:(1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算.(2)如果所给的二次根式不是最简二次根式,应该先化简,再进行加减运算.定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.3.例题例1 下列各式中,哪
12、些是同类二次根式? , , , , , , .解:略.例2 计算 .解:.例3 计算 .解:.二次根式加减法的法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式进行合并,合并方法为系数相加减,根式不变.(可对比整式的加减法则)例4 计算:(1) .解:.(2) .解:.(二)随堂练习计算:(1) ;(2) ;(3) .练习:教材P192中1、2(1)、(2)、(3)、(4)、(5);教材P193中1、2.(三)总结、扩展同类二次根式的定义.与整式的加减法进行比较,强调注意的问题.(四)布置作业教材P193中(1)、(2)、(3)、(4)、(5)、(6);教材P194中4(
13、1)、(2)、(3)、(4).(五)板书设计二次根式教学实录31.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法.本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接.(1)知识结构(2)重难点分析本节的重点 .概念.利用二次根式的性质把二次根式化简为.重点分析 *的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算.二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定
14、同类二次根式,是在化简为的基础上进行的.因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在*中却起着穿针引线的作用,教师 在教学 中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步.本节的难点是化简二次根式的方法与技巧.难点分析 化简二次根式,实际上是二次根式性质的综合运用.化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽
15、方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.所以对初学者来说,这一过程容易出现符号和计算出错的问题.熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力.重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断.因此建议在教学过程 中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学 中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧.另外,化简运算在本节既是重点也是难点,学生在简洁性和准确性上都容易出现问题,因此建议在教学
16、过程 中多要求学生观察二次根式的特点根据其特点分析运用哪条性质、哪种方法来解答,培养学生的分析能力和观察能力多要求学生注意每步运算的根据,培养学生的严谨习惯.2.教法建议素质教育 和新的教改精神的根本是增强学生学习的自主性和学生的参与意识,使每一个学生想学、爱学、会学。因此教师 设计教学 时要充分考虑到学生心理特点和思维特点,充分发挥情感因素,使学生完全参与到整个教学 中来。在复习引入时要注意每个学生的反映,对预备知识掌握比较好的学生要用适当的方式给于表扬,掌握差一些的学生要给予鼓励和适当的指导,使每一个学生愉快的进入下一个环节。学生自主学习时段,教师 要注意学生的反馈情况,根据学生的反馈情况
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 根式 教学 实录
链接地址:https://www.31ppt.com/p-571655.html