《三角形的内角和》教学设计.doc
《《三角形的内角和》教学设计.doc》由会员分享,可在线阅读,更多相关《《三角形的内角和》教学设计.doc(34页珍藏版)》请在三一办公上搜索。
1、三角形的内角和教学设计 三角形的内角和教学设计1教学内容:义务教育课程标准实验教科书_版小学数学四年级下册第4246页教学目标:1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出“三角形内角和是180”的结论,会应用这一规律进行计算。2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。教学过程:一、创设情境,导入新课1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!播放课件详细内容说明:一个大的直角三角形说
2、:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是的。”一个小的锐角三角形很委屈的样子说:“是这样吗?”(它们在争论谁的内角和大。)你知道什么是三角形的内角和吗?通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。【设计意图】从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。二、自主探究、发现规律1、探究三角形内角和的特点(1)量一量师:你认为怎样能知道三角形的内角和?生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。学生活动(
3、小组合作-每组准备三种不同的三角形)量角,求和,完成第43页的表格。学生交流汇报测量结果。师:从刚才的交流中,你发现了什么?生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180。(在量的过程中,由于误差,有的学生可能算出内角和在180左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?(2)拼一拼学生分小组活动,教师参与学生的活动,并给予必要的指导。学生展示交流,师:从大家的交流中,我们发现都可以把三角形的三个内角拼成一个平角,证明
4、“三角形内角和是180” 。(3)折一折小组活动,学生交流生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360,所以三角形的内角和就是它的一半,是180。生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90,因此三角形内角和就是180。2、归纳师:通过刚才的活动,我们得出了什么结论?生:三角形的内角和等于180。3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?学生畅所欲言,对得出的规律做系统的整理。【设计意图】动手实践,自主探索,亲身体验,是学习数学的重要方
5、式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。三、灵活运用,巩固练习师:好,大家已经发现了“三角形内角和是180”这一规律,你能应用这个规律解决一些实际的问题吗?1、判断钝角三角形比锐角三角形的内角和大。 ( )锐角三角形的两个内角和小于90。 ( )一个三角形最少有两个锐角。 ( )一个钝角三角形最少有一个钝角。 ( )学生判断并说出理由。2、自主练习第6题练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。小结:以后
6、如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。3、游戏: 选度数,组三角形(课件显示如下)请选出三个角的度数来组成一个三角形10 18 15 150 130 7220 50 70 35 7552 56 54 58 60学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,并说出理由。设计意图用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索
7、性和开放性的问题,注重拓宽学生的思维活动空间。四、课堂总结、深化认识谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?【设计意图】不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。课后反思:本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础
8、。三角形的内角和教学设计2【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。【教学难点】对不同探究方法的指导和学生对规律的灵活应用。【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。【教学过程】一、激趣引入。1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。师:那么,下面老师给大家出个
9、谜语。请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。1
10、、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。师:三角形有几个内角啊?生:3个。师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。2、研究特殊三角形的内角和师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?生:算一算:90+60+30=180 90+45+45=180师:180也是我们学习过的什么角?生:平角师:从刚才两个三角形的内角和的计算中,你发现了什么?3、研究一般三角形
11、的内角和师:猜一猜,其它三角形的内角和是多少度呢?生:4、操作、验证师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?要求:(1)每4人为一个小组。(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?(3)验证的方法不只一种,同学们要多动动脑子。师:好,开始活动!师:巡视指导师:好!请一组汇报测量结果。生:通过测量我们发现每个三角形的三个内角和都在180度左右。师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。师
12、:好!非常好!师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180。师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)现在老师问同学们,三角形的内角和是多少?生:180度。师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180”。三、解决疑问师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了
13、吗?生:没有师:那你能用这节课的知识解释一下为什么画不出来吗?生:两个直角是180度,没有第三个角了。师:如果想画出有两个角是钝角的三角形你能画出来吗?生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。师:学会了知识,我们就要懂得去运用。四、巩固提高。1、填空。(1)三角形的内角和是()度。(2)一个三角形的两个内角分别是80和75,它的另一个角是()。2、求下面各角的度数。(1)1=27 2=53 3=()这是一个()三角形。(2)1=70 2=50 3=()这是一个()三角形。3、判断每组中的三个角是不是同一个三角形中的三个内角。(1)80 95 5( )(2)60
14、70 90( )(3)30 40 50( )4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)对学生进行思品教育。5、思考延伸。根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)6090453060、90、45、30544652五、总结。三角形的内角和教学设计3一、本节课在新一轮课程改革下的设计理念:数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新
15、课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分
16、调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。二、教材分析与处理:三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。三、学生分析处于这个年龄阶段的学生有能力自己动手,
17、在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。四、教学目标:1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。2.能力目标:通
18、过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。五、重难点的确立:1.重点:三角形的内角和定理探究与证明。2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论六、教法、学法和教学手段:采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。教学过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形的内角和 三角形 内角 教学 设计
链接地址:https://www.31ppt.com/p-569341.html