合情推理与演绎推理课件(精品课件)-.ppt
《合情推理与演绎推理课件(精品课件)-.ppt》由会员分享,可在线阅读,更多相关《合情推理与演绎推理课件(精品课件)-.ppt(65页珍藏版)》请在三一办公上搜索。
1、第二章 推理,观察下面图形规律,在其右下角的空格内画上合适的图形为()A.B.C.D.,佛教百喻经中有这样一则故事。从前有一位富翁想吃芒果,打发他的仆人到果园去买,并告诉他:要甜的,好吃的,你才买.仆人拿好钱就去了.到了果园,园主说:我这里树上的芒果个个都是甜的,你尝一个看.仆人说:我尝一个怎能知道全体呢 我应当个个都尝过,尝一个买一个,这样最可靠.仆人于是自己动手摘芒果,摘一个尝一口,甜的就都买回去.带回家去,富翁见了,觉得非常恶心,一齐都扔了.,第一个芒果是甜的,第二个芒果是甜的,第三个芒果是甜的,这个果园的芒果都是甜的,已知的判断,新的判断,根据一个或几个已知的判断来确定一个新的判断的思
2、维过程就叫推理.,2.1 合情推理与演绎推理,本节知识结构,2.1.1 合情推理,归纳推理,歌德巴赫猜想的提出过程:,3710,31720,131730,1037,20317,301317,偶数奇质数奇质数,63+3,,一个偶数(不小于6)总可以表示成两个 奇质数之和;,没有发现反例。,83+5,105+5,125+7,147+7,165+11,1 00029+971,,1.归纳推理的定义:,由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).,简言之,归纳推理是由部分到整体、由个别到一般的推理。,哥德巴赫
3、猜想的过程:,归纳推理的过程:,例如:金受热后体积膨胀,银受热后体积膨胀,铜受热后体积膨胀,铁受热后体积膨胀,金、银、铜、铁是金属的部分小类对象,它们受热后分子的凝聚力减弱,分子运动加速,分子彼此距离加大,从而导致体积膨胀 所以,所有的金属受热后都体积膨胀。,例如:磨擦双手(S1)能产生热(P),敲击石头(S2)能产生热(P),锤击铁块(S3)能产生热(P),磨擦双手、敲击石头、锤击铁块都是物质运动;所以,物质运动能产生热。,铜能导电铝能导电金能导电银能导电,三角形内角和为凸四边形内角和为凸五边形内角和为,第一个芒果是甜的第二个芒果是甜的第三个芒果是甜的,第一个数为2第二个数为4第三个数为6第
4、四个数为8,铜能导电铝能导电金能导电银能导电,三角形内角和为凸四边形内角和为凸五边形内角和为,第一个芒果是甜的第二个芒果是甜的第三个芒果是甜的,第一个数为2第二个数为4第三个数为6第四个数为8,部分个别,整 体一 般,例:观察下图,可以发现,1+3+(2n1)=n2,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,,归纳推理的一般步骤:,检验猜想。,提出带有规律性的结论,即猜想;,对有限的资料进行观察、分析、归纳整理;,由两类对象具有某些类似特征,和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比),2.类
5、比推理的定义:,简言之,类比推理是由特殊到特殊的推理,发明行星三大运动定律的开普勒曾说类比推理是自然奧妙的参与者和自己最好的老师,数学家波利亚曾指出“类比是一个伟大的引路人,求解立体几何往往有赖于平面几何的类比问题.”,【例3】如图,利用类比推测球的有关性质,球心与截面圆(不经过球心的截面圆)圆心的连线垂直于截面圆。,与球心距离相等的两个截面圆面积相等;与球心距离不等的两个截面圆面积不等;与球心距离较近的截面圆面积较大。,球的表面积,球的体积,类比推理的一般步骤:,找出两类对象之间可以确切表述的相似特征;,用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;,检验猜想。,类比推理的几
6、个特点;,1.类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果.,2.类比是从一种事物的特殊属性推测另一种事物的特殊属性.,3.类比的结果是猜测性的不一定可靠,单它却有发现的功能.,例5 类比平面内直角三角形的勾股定理,试 给出空间中四面体性质的猜想,类比推理,类比推理,以旧的知识为基础,推测新的结果,具有发现的功能,由特殊到特殊的推理,类比推理的结论不一定成立,注意,合情推理,归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理。,通俗地说,合情推理是指“合乎情理”的
7、推理。,合情推理的应用,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论。,证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向,归纳推理和类比推理的过程,通俗地说,合情推理是指“合乎情理”的推理.,分析:面积法,A,B,C,D,O,O,例7.,图(1),图(2),2.2演绎推理,完成下列推理,,1.所有的金属都能导电,2.一切奇数都不能被2整除,所以铜能够导电.,因为铜是金属,所以2007不能被2整除.,因为2007是奇数,一般性的原理,特殊情况,结论,一般性的原理,特殊情况,结论,它们有什么特点?,案例分析:,从一般性的原理出发,推出某个特殊情况下的结论,这种
8、推理称为演绎推理,1.所有的金属都能导电,2.一切奇数都不能被2整除,所以铜能够导电.,因为铜是金属,所以2007不能被2整除.,因为2007是奇数,大前提,小前提,结论,一般性的原理,特殊情况,结论,一般性的原理,特殊情况,结论,案例分析2:,从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理,简言之,演绎推理是由一般到特殊的推理;,演绎推理的一般模式“三段论”大前提-已知的一般原理小前提-所研究的特殊情况结论-根据一般原理,对特殊情况做出的判断,演绎推理的定义,例8.用三段论的形式写出下列演绎推理(1)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等。,矩形的对角线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 合情 推理 演绎 课件 精品
链接地址:https://www.31ppt.com/p-5692781.html