原子吸收讲义.ppt
《原子吸收讲义.ppt》由会员分享,可在线阅读,更多相关《原子吸收讲义.ppt(144页珍藏版)》请在三一办公上搜索。
1、原子吸收光谱法,目录,1.概况2.AAS的发展历史3.AAS的工作原理4.AAS的仪器构造5.AAS的分析方法6.AAS的干扰与消除7.AAS的样品处理8.AAS在海绵钛中的应用9.AAS的使用维护和故障分析及排除,1 概况,原子光谱包括:原子吸收光谱(atomic adsorption spectrometry,AAS):是基态原子吸收共振辐射跃迁到激发态而产生的吸收光谱;原子发射光谱(atomic emission spectrometry,AES):是价电子受到激发跃迁到激发态,再由高能态回到各较低的能态或基态时,以辐射形式放出其能激发能而产生的光谱。原子荧光光谱(atomic fluo
2、rescence spectrometry,AFS):是原子吸收辐射之后提高到激发态,再回到基态或邻近基态的另一能态,将吸收的能力以辐射形式沿各个方向放出而产生的发生光谱。,原子吸收光谱法是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,这种方法根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。图1.1是一台商品原子吸收光谱仪:,图1.1 商用原子吸收光谱仪,图1.2海绵钛化验室的原子吸收光谱仪contAA300,2.AAS的发展历史,原子吸收
3、的发展经历了四个阶段:第一阶段 原子吸收现象的发现与科学解释 早在1802年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,就发现了太阳连续光谱中出现的暗线。1817年,弗劳霍费(J.Fraunhofer)在研究太阳连续光谱时,再次发现了这些暗线,由于当时尚不了解产生这些暗线的原因,于是就将这些暗线称为弗劳霍费线。1859年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且根据钠发射线与暗线在光谱中位置相同这一事实,断定太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子
4、对太阳光谱中的钠辐射吸收的结果。,第二阶段 原子吸收光谱仪器的产生,原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文原子吸收光谱在化学分析中的应用奠定了原子吸收光谱法的基础。50年代末和60年代初,Hilger,Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。,Varian Model AA-4 Circa 1966,1955瓦里安终生顾问、澳洲人 Alan Walsh先生发表了原子吸收分析的突破性论文196
5、0世界上第一台商品化的原子吸收问世1966第一次采用氧化亚氮/乙炔火焰原子吸收1971世界上第一台纵向加热石墨炉1971首先发展Zeeman 背景校正技术,并获专利1981 首家实现操作自动化1984第一台连续氢化物发生器1990推出世界上最先进的Mark VI 火焰燃烧头1992Varian-OSI 获得 ISO-9001 质量认证证书1995独家推出在线火焰自动进样器(SIPS8)1998世界上第一台快速分析火焰原子吸收220FS2002世界上第一套实现火焰和石墨炉同时分析的原子吸收光谱仪,Varian AAS 的发展史,第三阶段 电热原子吸收光谱仪器的产生,1959年,苏联里沃夫发表了电
6、热原子化技术的第一篇论文。电热原子吸收光谱法的绝对灵敏度可达到10-1210-14g,使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利地实现原子吸收测定。基体改进技术的应用、平台及探针技术的应用以及在此基础上发展起来的稳定温度平台石墨炉技术(STPF)的应用,可以对许多复杂组成的试样有效地实现原子吸收测定。,第四阶段 原子吸收分析仪器的发展,随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元
7、素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。,3.AAS的工作原理,一、原子吸收光谱仪的,从1802年伍郎斯顿在研究太阳光谱时发现,但作为一种实用的现代仪器分析方法,原子吸收分光光度法出现在1955年论文发表,正式开创了火
8、焰原子吸收光谱分析法并开始于不断探索和研究。1960世界上第一台商品化的原子吸收问世。,二、方法原理,原子吸收光谱法:又称原子吸收分光光度法,是基于从光源发出的被检测元素特征辐射通过元素的原子蒸汽时被基态原子吸收,由辐射的减弱程度测定元素含量的一种现代仪器分析方法。,(一)、电子跃迁,原子发射和原子吸收的外层电子在不同能级之间的跃迁有关。当电子从低能级跃迁到高能级时,必须吸收相当于两个能级差的能量;而从高能级跃迁到低能级时则要释放出相应的能量。,电子跃迁的3中方式,高 低;低 高;低 高 低。,原子吸收光谱所吸收光谱辐射的波长为:E=hC=,原子吸收光谱的产生,当原子吸收光子(电磁辐射)的能量
9、(等于基态和激发态能量之差)时,原子从基态跃迁至激发态。,E,基态,第一激发态,热能,E:能量 h:普朗克常数(Plank constant)=6.626210-34JsC:光在真空中的传播速度=2.9979251010cm/s:波长,常用nm作为单位:频率,每秒内的波动次数,单位Hz(次/秒),(二)、原子吸收光谱的几个重要概念,共振吸收线和共振发射线分析线原子蒸汽中原子数和火焰温度的关联原子吸收线的性状及其展宽的原因定量分析的依据,(1)共振线,当电子从基态跃迁到第一激发态时,与所吸收能量对应的光谱线共振吸收线;由第一激发态跃迁回基态时,与所释放能量对应的光谱线共振发射线;共振吸收线和共振
10、发射线共振线。,(2)原子蒸汽中基态原子数和火焰温度的关联,(3)、原子吸收线的性状及其展宽的原因,(三)原子吸收光谱分析法的特点,特点:、检出限低;、选择性好;、精密度高;、抗干扰能力强;、分析速度快;、应用范围广;、用量小;、仪器设备相对比较简单,操作简便。,原子在各能级的分布,在正常情况下,原子是以它的最低能态即基态形式存在的,即使在原子化过程中,也只有少数原子以较高能态存在。理论研究和实验观测表明,在热平衡状态时,激发态原子数 Nj 与基态原子数 N0 的关系可用Boltzmann(玻尔兹曼)方程表示:,Nj,N0 激发态和基态原子数g j,g 0 激发态和基态统计权重K Boltzm
11、an常数T 热力学温度;绝对温度Ei 激发能,在原子分光光度法中,原子化温度一般小于3000K,(Ni/N0)绝大部分在10-3以下,即与基态原子数相比,激发态原子数可以忽略不计,可认为NoN。可认为所有的吸收都是在基态进行的,这就极大地减少了可以用于原子吸收的吸收线的数目。,-,多普勒变宽(Doppler broadening;D)由于原子无规则的热运动而引起的变宽,故又称为热变宽,D=,若用M(原子量)代替m,则:,m=1.660510-24M,5 AAS的仪器构造,5.1、原子吸收分光光度计的四个主要部件:1、光源 2、原子化器 3、单色器 4、检测器,原子吸收仪器结构示意图,一、光源,
12、光源分为锐线光源和连续性光源:锐线光源空心阴极灯连续性光源氘灯锐线光源:,锐线光源(发射线半宽度远小于吸收线的光宽),在原子吸收分析中需要使用锐线光源,测量谱线的峰值吸收,锐线光源需要满足的条件:(1)光源的发射线与吸收线的0一致。(2)发射线的1/2小于吸收线的 1/2。提供锐线光源的方法:空心阴极灯,峰值吸收,采用锐线光源进行测量,则ea,由图可见,在辐射线宽度范围内,K可近似认为不变,并近似等于峰值时的吸收系数K0,将 It=I0e-Kvb 代入上式:,则:,峰值吸收,在原子吸收中,谱线变宽主要受多普勒效应影响,则:,上式的前提条件:(1)ea;(2)辐射线与吸收线的中心频率一致。,1.
13、光源作用 提供待测元素的特征光谱。获得较高的灵敏度和准确度。光源应满足如下要求;(1)能发射待测元素的共振线;(2)能发射锐线;(3)辐射光强度大,稳定性好。2.空心阴极灯:结构如图所示,空心阴极灯使用前应经过5-20min预热时间,使灯的发射强度达到稳定.,空心阴极灯的工作原理,施加适当电压时,电子将从空心阴极内壁流向阳极;与充入的惰性气体碰撞而使之电离,产生正电荷,其在电场作用下,向阴极内壁猛烈轰击;使阴极表面的金属原子溅射出来,溅射出来的金属原子再与电子、惰性气体原子及离子发生撞碰而被激发,于是阴极内辉光中便出现了阴极物质和内充惰性气体的光谱。用不同待测元素作阴极材料,可制成相应空心阴极
14、灯。空心阴极灯的辐射强度与灯的工作电流有关。,优缺点:(1)辐射光强度大,稳定,谱线窄,灯容易更换。(2)每测一种元素需更换相应的灯。,1、多元素空心阴极灯 在阴极内含有两个或多个不同元素,点燃时,阴极负辉区能 同时辐射出两种或多种元素的共振线,只要更换波长,就能在一 个灯上同时进行几种元素的测定。缺点是辐射强度、灵敏度、使 用寿命都不如单元素灯。组合越多,光谱特性越差,谱线干扰也 大。2、灯电流选择的探讨 空心阴极灯的辐射强度与工作电流有关。灯电流过低,放电 不稳定,光谱输出强度低;灯电流过大,谱线变宽,灵敏度下 降,灯的寿命也要缩短。一般说来,在保证放电稳定和足够光强 的条件下,尽量选用低
15、的工作电流。通常选用最大电流的1/2 2/3为工作电流。实际工作中,最合适的电流应通过实验确定。3、分析线的选择探讨 并不是在任何情况下都一定要先用共振线作为分析线,而应 选用不受干扰而吸收值适度的谱线作为分析线。,1.优缺点:(1)辐射光强度大,稳定,谱线窄,灯容易更换。(2)每测一种元素需更换相应的灯。,2.空心阴极灯的使用注意事项:,(1)空心阴极灯使用前应预热2030min,使灯的发光强度达到稳定;,(2)点燃后可从灯发射出光的颜色判断灯的工作是否正常,HCL的优缺点及注意事项,(3)元素灯长期不用,应定期(每月或每隔二、三)点燃处理1h,(4)使用元素灯时应轻拿轻放,低熔点的灯用完后
16、,要等冷却后才能移动。,HCL的优缺点及注意事项,motorizedMirror,固定4 灯位,方法:充氖气的灯发射光的颜色是橙红色;充氩气的灯是淡紫色;当灯内有杂质气体时,发射光的颜色变淡,如充氖气的灯,颜色可变为粉红,发蓝或发白。,二、原子化器,原子化器:原子化器的功能是提供能量,使试样干燥、蒸发和原子化。,两种类型,火焰原子化石墨炉原子化,1、火焰原子化 由火焰提供能量,在火焰原子化器中实现被测元素原子化。对火焰的的基本要求是:,温度高稳定背景发射噪声低燃烧安全,1、火焰原子化器(flameatomization)是由化学火焰提供能量,使被测元素原子化。测定的是平衡时通过光路吸收区平均基
17、态原子数,其特征是原子蒸发特性不随时间变化,即是可以连续重复测定结果,常用的是预混合型原子化器,它包括雾化器、雾化室和燃烧器。,燃气,助燃气(空气),试样,雾化室,燃烧器,废液排放口,雾化器,火焰,撞击球,(1)雾化器(nebulizer)作用:将试样雾化为均匀雾滴。雾滴越小,火焰中生成的基态的原子就越多。雾化器的雾化效率一般仅10%左右,这是影响火焰化灵敏度和检出限的主要问题。a、气溶胶产生 气溶胶的平均直径与下列因素有关:,:表面张力;,当液体流量小,Qg/QL 5000,第一项起支配作用当液体流量大,Qg/QL 5000,第二项起支配作用平均直径均在10-20 m 之间。,据实验:do
18、30 m 在火焰中通过 30 mm 才脱溶剂因此应创造条件,产生直径小于10 m 的气溶胶,(2)雾化室 作用:使较大雾滴沉降、凝聚从废液口排出;预混合形成气溶胶;稳定混合气气压,使燃烧器产生稳定的火焰。(3)燃烧器(burner)作用:产生火焰,使进入火焰的试样气溶胶蒸发和原子化,常用的是单缝燃烧器。火焰的组成关系到测定的灵敏度、稳定性和干扰等。最常用的燃气-助燃气是乙炔-空气。,几种类型火焰及温度,火焰原子化温度,(a)保证待测元素充分离解为基态原子的前提下,尽量采用低温火焰;(b)火焰温度越高,产生的热激发态原子越多;(c)火焰温度取决于燃气与助燃气类型,常用空气乙炔最高温度2600K能
19、测35种元素。,火焰类型:,化学计量火焰:温度高,干扰少,稳定,背景低,常用。富燃火焰:燃气量大于化学计算量还原性火焰,燃烧不完全,测定较易形成难熔氧化物的元素Mo、Cr稀土等。贫燃火焰:助燃气量大于化学计算量火焰温度低,氧化性气氛,适用于碱金属测定。可燃混合气体供气速度应大于燃烧速度,但不易过大,火焰种类及对光的吸收,空气-乙炔火焰、氧化亚氮-乙炔火焰、氧屏蔽空气-乙炔火焰等选择火焰时,还应考虑火焰本身对光的吸收。根据待测元素的共振线,选择不同的火焰,可避开干扰:,例:As的共振线193.7nm 由图可见,采用空气-乙炔火焰时,火焰产生吸收,而选氧化亚氮-乙炔火焰则较好;空气-乙炔火焰:最常
20、用;可测定30多种元素;N2O-乙炔火焰:火焰温度高,可测定的增加到70多种,(4)优缺点:火焰原子化器操作简单,火焰稳定,重现性好,可获得足够的信噪比,精密度高,线性范围较石墨炉宽,燃烧器系统小巧、耐用、价格低廉,应用广泛。但它原子化效率低,气态原子在火焰吸收区中停留的时间很短,约10-4s,灵敏度低,通常只可以液体进样。(5)火焰原子化条件选择的探讨 火焰类型:燃气-助燃气比例 测量高度,2、石墨炉电热原子化,(1)石墨炉外型,(2)原子化过程,原子化过程分为干燥、灰化(去除基体)、原子化、净化(去除残渣)四个阶段,待测元素在高温下生成基态原子。,常用的非火焰原子化器是管式石墨炉原子化器,
21、管式石墨炉是用石墨管做成,是将样品用进样器定量注入到石墨管中,并以石墨管作为电阻发热体,通电后迅速升温,使试样达到原子化的目的。它由加热电源、保护气控制系统和石墨管状炉组成。外电源加于石墨管两端,供给原子化器能量,电流通过石墨管产生高达3000的温度,使置于石墨管中被测元素变为基态原子蒸气。保护气控制系统是控制保护气的,仪器启动,保护气Ar气流通,空烧完毕,切断Ar气流。外气路中的Ar气沿石墨管外壁流动,以保护石墨管不被烧蚀,内路的Ar气从管两端流向管中心,由管中心孔流出,以有效地除去在干燥和灰化过程中产生的基体蒸气,同时保护已经原子化了的原子不再被氧化。在原子化阶段,停止通气,以延长原子在吸
22、收区内的平均停留时间,避免对原子蒸气的稀释。,在石墨炉原子化系统中,火焰被置于氩气环境下的电加热石墨管所代替。氩气可防止石 墨管在高温状态下迅速氧化并在干燥、灰化阶段将基体组份及其它干扰物质从光路中除 去。少量样品(1至70 mL,通常在 20 mL左右)被加入热解涂层石墨管中。石墨管上的热解涂层可有效防止石墨管的氧化,从 而延长石墨管的使用寿命。同时,涂层也可防止样品侵入石墨管从而提高灵敏度和重复 性。石墨管被电流加热,电流的大小由可编程控制电路控制,从而在加热过程中可按 一系列升温步骤对石墨管中的样品进行加热,达到除去溶剂和大多数基体组份然后将样 品原子化产生基态自由原子。分子的分解情况取
23、决于原子化温度、加热速率及热石墨管 管壁周围环境等因素。石墨管中的样品得以完全原子化,并在光路中滞留较长时间(相对火焰法而言)。因而 该方法可是灵敏度大大提高,使检出限降低到ppb级。主要原因是在测量时,溶剂不复存在,也没有火焰原子化系统那样,样品被气体稀释的情况出现。虽然基态自由原子仍然 会被干扰,但却呈现出与火焰原子化系统所不同的特性。通过正确地选择分析条件、化 学基体改进剂更易于控制石墨炉原子化过程。由于采用石墨炉技术可对众多基体类型的 样品进行直接分析,从而可减少样品制备过程所带来的误差。同时,石墨炉技术可实现 无人监管全自动分析。,石墨炉的优点是:试样原子化效率高,不被稀释,原子在吸
24、收区域平均停留时间长,灵敏度比火焰法高。石墨炉加热后,由于有大量碳存在,还原气氛强;石墨炉的温度可调,如有低温蒸发干扰元素,可以在原子化温度前分馏除去。样品用量少,并且可以直接固体进样。原子化温度可以自由调节,因此可以根据元素的原子化温度不同,选择控制温度。石墨炉的缺点是:装置复杂。样品基体蒸发时,可能造成较大的分子吸收,石墨管本身的氧化也会产生分子吸收,石墨管等固体粒子还会使光散射,背景吸收大,要使用背景校正器校正。管壁能辐射较强的连续光,噪声大。因为石墨管本身的温度不均匀,所以要严格控制加入样品的位置,否则测定重现性不好,精度差。,平台的作用是推迟样品原子化的时间,使原子化在石墨管达到稳定
25、高温状态时发生。其 好处是在较高温度下,可减少干扰及背景。,热解平台是一片固体热解涂层石墨,中央有一可盛40mL样品的凹槽。平台可安装在石墨管中。石墨管与平台只在平台边沿部分与石墨管管壁保持最少的接触点。,但平台的使用有一定局限性,一是最大进样量只能到40mL;再者,平台的安装,略微降低了光通量因此需要仔细调整石墨炉炉体的位置,尽量是光通量最大;编程时温度需 略微高一些,同时所得结果的托尾现象也较严重。因此,在管壁法能满足要求时应尽量 采用管壁法。,热解石墨涂层,无涂层管,热解涂层,涂层平台,石墨炉特性:(1)自由原子在吸收区停留时间长,达火焰的103倍(2)原子化在Ar气气氛中进行,有利于氧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原子 吸收 讲义
链接地址:https://www.31ppt.com/p-5692281.html