交通工程 道路通行能力 第二章 双车道公路通行能力.ppt
《交通工程 道路通行能力 第二章 双车道公路通行能力.ppt》由会员分享,可在线阅读,更多相关《交通工程 道路通行能力 第二章 双车道公路通行能力.ppt(109页珍藏版)》请在三一办公上搜索。
1、,道路交通流理论,1,作为交通工程学理论基础的交通流理论是运用物理学和数学的方法来描述交通特性的一门边缘科学,它用分析的方法阐述交通现象及其机理,使我们能更好地理解交通现象及其本质,并使城市道路与公路的规划设计和营运管理发挥最大的功效。,概述,20世纪30年代才开始发展,最早采用的是概率论方法。1933年,金蔡(Kinzer.J.P)论述了泊松分布应用于交通分析的可能性;1936年,亚当斯(Adams.W.F)发表了数值例题;格林希尔茨(Greenshields)发表了用概率论和数理统计的方法建立的数学模型,用以描述交通流量和速度的关系。40年代,由于二战的影响,交通流理论的发展不多。50年代
2、,随着汽车工业和交通运输业的迅速发展,交通量、交通事故和交通阻塞的骤增,交通流中车辆的独立性越来越小,采用的概率论方法越来越难以适应,迫使理论研究者寻求新的模型,于是相继出现了跟驰(Car Following)理论、交通波(Traffic Wave Theory)理论(流体动力学模拟)和车辆排队理论(Queuing Theory)。这一时期的代表人物有Wardrop、Reuschel、Pipes、Lighthill、Whitham、Newel、Webster、Edie、Foote、Herman、Chandler等。,交通流理论的发展历程,1959年12月,交通工程学应用数学方面学者100多人在
3、底特律举行首届交通流理论国际研讨会,并确定每三年召开一次。从此,交通流理论的研究进入了一个迅速发展的时期。1975年丹尼尔(Daniel I.G)和马休(marthow,J.H)汇集了各方面的研究成果,出版了交通流理论一书,较全面、系统地阐述了交通流理论的内容及其发展。1990年美国Adolf DMay出版了Traffic Flow Fundamentals1996年,美国联邦公路局(The Federal Highway Administration,FHWA)出版了Monograph on Traffic Flow Theory。主编Nathan HGartner,Carroll Mess
4、er,Ajay KRathi等。涉及的内容包括:交通流特性、人的因素、车辆跟驰模型、连续流模型、宏观交通流模型、交通影响模型、无信号交叉口理论、信号交叉口交通流理论、交通模拟和交通分配。,交通流理论的发展历程,从交通工程(汽车)诞生第二次世界大战结束,汽车工业发展,交通量迅速增长,城市道路建设,交通事故上升,创始阶段,研究背景 交通工程学刚刚诞生,需要建立交通工程学的基本理论体系,探索道路交通的基本规律代表性人物 格林希尔茨(Bruce D.Greenshields)研究手段 大量现场调查与观测 利用概率论与数理统计,建立模型代表性成果 交通流与速度的关系模型,快速发展阶段,第二次世界大战结束
5、20世纪50年代末,汽车数量猛增,交通规划,道路建设加快,交通控制,战后经济恢复期(50年代),为了解决就业问题,通过道路建设带动汽车.建材.钢铁.石油.玻璃等行业的发展,研究背景 汽车拥有量大幅度增加,交通规划、交通控制开始发展,需要交通流理论进行支撑代表性人物 沃尔卓普(Wardrop)韦伯斯特(Webster)等一批学者研究手段 大量现场调查与观测 运筹学、物理学模型代表性成果 车辆跟弛理论 交通波动理论 随机排队理论等,稳定发展阶段,20世纪50年代末,交通拥挤,交通问题,交通事故,交通污染,代表性成果交通产生理论交通需求分析交通流特征交通供给理论交通平衡理论路网交通流调度(分配)交通
6、模拟理论计算机模拟再现、辅助决策,研究背景 汽车普及,交通问题日趋严重,希望缓解城市交通拥 挤问题代表性人物 梅(May)、赫尔曼(Herman)纽威尔(Newell)等研究手段 调查与观测 网络理论、人工智能理论(神经网络、元胞自动机)、计算机仿真(管理学、物理学、数学),道路通行能力,背景,定义交通流理论:研究在一定环境下交通流随时间和空间变化规律的模型和方法体系。Traffic flow theory:The description of traffic behavior by application of the laws of physics and mathematics.,研究内
7、容,交通流模型(Traffic Flow Model):(驾驶)人员的因素模型(Human Factors)车辆跟驰模型(Car Following)连续流模型(Continuous Flow)无信号控制交叉口模型(Unsignalized Intersection)信号控制交叉口模型(Signalized Intersection)宏观交通流模型(Macroscopic Flow)交通影响模型(Traffic Impact)道路通行能力(Highway Capacity),研究内容,交通流特性(Traffic Flow Characteristics)指交通流运行状态的定性和定量特征。交通流
8、参数(用来描述和反映交通流特性的物理量)车头时距(Time Headway)流量(Traffic Flow Rate、Traffic Volume)速度(Speed)密度(Density)车头间距(Distance Headway)车道占有率(Occupancy),交通流参数,1、车头时距(Time Headway),2、交通量(Volume、Flow Rate)单位时间内,通过道路(或某一条车道)某一地点、某一断面的交通实体数。Number of vehicles passing line A-A in an unit of time.,算术平均值(arithmetic mean),平均值概
9、念复习,几何平均值(geometric mean),调和平均值(harmonic mean),交通流参数,1)时间平均车速(TMS)单位时间内各车辆经过某断面的地点速度的算术平均值,2)空间平均车速(SMS)在某瞬间,某区间内的全部车辆的车速分布平均值。当观测长度为一定时,其数值为地点车速观测值的调和平均值.,TMS,Average Travel Time:,SMS=,3、速度(Speed),地点车速车辆通过道路某一点时的速度,X位置,t时刻,时间平均车速,所有车辆地点车速的算术平均值,N观测的车辆数ui第i辆车的地点速度,在某一特定时刻,行驶于道路某一特定路段内全部车辆的地点车速分布平均值。
10、,N观测的车辆数t很短的时间间隔sit时间内车辆行驶的距离,区间平均速度是地点速度的调和中项;区间平均速度小于时间平均速度。,分别为区间平均速度和时间平均速度的方差;区间平均速度与时间平均速度为一定条件下的线性关系。,3)TMS与SMS间的关系,速度,21,例:设有3辆汽车,分别以20、40、60km/h的速度通过长度为10km的路段,试求时间平均车速和空间平均车速。,解:先求时间平均车速:再求空间平均车速,速度,自由流(车速差别不大)下,两种平均车速相差不大车速变化很大时,两种平均车速的差别很大,非拥挤路段,拥挤路段或信号交叉口前,区分TMS与SMS的意义,速度,4、交通密度(Traffic
11、 Density),某瞬间单位长度内一条车道上的车辆数,表示在一条车道上车辆的密集程度,常以K 表示,veh/km,定义,对于具有不同车道数的道路,为使车流密度具有可比性,车流密度应按单车道定义,单位:辆km车道。密度是交通流中重要的参数,因为它直接反映了交通需求量。交通密度也可用车头间距来表示密度是瞬间值、是平均值,随着观测的时刻、路段长度而变化。密度还可以近似地用来衡量驾驶员操纵车辆的舒适性和灵活性。密度的应用:管制、事故探测、服务水平,交通流参数,5、车道占有率(Occupancy),1.空间占有率在道路的一定路段上,车辆总长度与路段总长度之比,%车流密度只能表示车流的密集程度,而空间占
12、有率则能反映某路段上车队的长度。,2.时间占有率在道路的任一路段上,车辆通过时间的累计值与观测总时间的比值,以%表示。,交通流参数,6.车头间距(Spac Headway)在同向行驶的车队中,相邻两辆车的车头间的距离。用车辆上有代表性的点来测量,如前保险杠或前轮。路段中所有车头间距的均值称为平均车头间距(hs)。,车头间距hs和密度之间的关系为hs=1000/K,交通流参数,26,待续,3-2 交通流参数调查方法,四类方法:定点调查小距离调查沿路段长度调查浮动车调查,(1)调查方法试验车以区间内大部分车辆均衡的速度反复行驶;一人记录与试验车相反方向的来车辆数M;一人记录同向行驶车辆中超越试验车
13、的车辆数O;一人记录同向行驶车辆中被试验车超越的车辆数P;另一人记录时间T。(2)单向交通量计算方法(3)注意事项试验车种类时间段长(适用于短时段测量)距离的测定,浮动车法,(4)调查数据计算 测定方向上的交通量qc:Xa:测试车逆测定方向行驶时,测试车对向来车数;Yc:测试车在待测定方向行驶时,超越测试车的车辆数减去被测试车超越的车辆数。平均行程时间平均车速,浮动车法,在设计新的交通设施或管理方案时,需要预测某些具体的交通特征参数,并且希望用现有的或假设的有限数据作出预测。设计左转专用道时,需预测一个信号周期内到达车辆超过4辆的次数(车辆到达分布:离散型);设计人行横道交通管制系统,需预测主
14、路车头时距分布(车头时距分布:连续型);等等。统计分布可以帮助技术人员得到确切的预测结果。,3-3交通流参数的统计分布,车辆的到达在某种程度上具有随机性,基于概率论,描述这种随机性的统计规律有两种方法。离散型分布(计数分布):考察在一段固定长度的时间(空间)内到达某场所的交通数量的波动性;连续型分布:研究上述事件发生的时间间隔的统计特性。如车头时距、可穿越空档的概率分布。,引言,一.离散型分布,通常情况下,在一定时间间隔内到达的车辆数(或一定长度路段上分布的车辆数)是随机的,用离散型分布描述。自由交通流、拥挤交通流、波动交通流泊松分布二项分布负二项分布,P(k)在计数间隔t内到达k辆车或人的概
15、率;单位时间内的平均到达率(辆/s或人/s);t每个计数间隔持续的时间(s)或距离(m);e自然对数的底,取值为2.71828;均值M与方差D均为t;即 M=D=t,适用条件:交通量不大,自由交通流,车辆随机到达,1.泊松(Poisson)分布,流的平稳性,对于任意的t0及t0,在时间区间(t,t+t)内有n个顾客到达的概率只与t有关,与时间区间的起点t无关。当t充分小时,在(t,t+t)内有一个顾客到达的概率与t成正比,即 其中,O(t)是当t 0时,关于t高阶无穷小;为单位时间内的顾客到达平均数。,1.泊松(Poisson)分布,泊松流(最简单流)-形成条件,在时间轴上,互不相交的时间区段
16、 和 内,顾客的到达数是相互独立的,即前一顾客的到达不影响后一顾客的到达。,流的无后效性,当t 充分小时,在 t 时间内到达一个顾客的概率为 t+o(t),到达两个或两个以上顾客的概率为 o(t);即两个顾客不可能同时到达,流的普遍性,泊松流(最简单流)-形成条件,设把长为t的时间区间分成m等分,每段长度为。若在dt内,有一个顾客到达,则称被“占着”,如果在dt内,没有顾客到达,则称为“空着”。被“占着”的概率近似为被“空着”的概率近似,根据流的无后效性,在m个dt中,有顾客到达与没有顾客到达可以看成是m次独立的试验,在长为t 的时间区间内,到达n个顾客的概率,泊松分布详解,在长为 t 的时间
17、区间内,到达n个顾客的概率,在m个dt中,有n个dt被顾客“占着”的概率,利用二项定律,泊松分布详解,dt0,m,泊松分布详解,到达数小于 k 辆车(人)的概率(m=t):到达数小于等于 k 的概率:到达数大于 k 的概率:到达数大于等于 k 的概率:,泊松分布公式,到达数至少是x但不超过y的概率:用泊松分布拟合观测数据时,参数 m 按下式计算:式中:g观测数据分组数;fj计算间隔t内到达kj辆车(人)这一事件发生的次(频)数;kj计数间隔t内的到达数或各组的中值;N观测的总计间隔数。,1.泊松(Poisson)分布,递推公式 应用条件,当观测数据的方差与均值S2/m的比值接近于(大约等于)1
18、时,泊松分布表示合适;明显地不等于1时,泊松分布表示不合适。,1.泊松(Poisson)分布,例题-1,例题,某信号交叉口周期C=97s,有效绿灯时间g=44s,在有效绿灯时间内排队的车流以s=900辆/h的流量通过交叉口,在有效绿灯时间外到达的车辆要停车排队。设信号灯交叉口上游车辆的到达率q=369辆/h,且服从泊松分布,求:使到达车辆不至于两次排队的周期能占的最大百分率。,例题-2,解:一个周期内能通过的最大车辆数AgS90044/360011辆,当某周期到达的车辆数N11辆时,则最后到达的(N-11)辆车就不能在本周期内通过而发生二次排队。在泊松分布中,一个周期内平均到达的车辆数m=t3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 交通工程 道路通行能力 第二章 双车道公路通行能力 交通 工程 道路 通行 能力 第二 车道 公路
链接地址:https://www.31ppt.com/p-5685436.html