二极管和三极管的入门基础知识图解.ppt
《二极管和三极管的入门基础知识图解.ppt》由会员分享,可在线阅读,更多相关《二极管和三极管的入门基础知识图解.ppt(71页珍藏版)》请在三一办公上搜索。
1、三极管放大电路,5.1 二极管5.2 三极管5.3 共射极放大电路 5.4 分压式偏置电路5.5 多级放大电路5.6 放大电路中的负反馈5.7 差分放大电路5.8 功率放大电路5.9 绝缘栅型场效应晶体管及其放大电路,背景知识,5.1二极管,知识分布网络,结,半导体是导电能力介于导体和绝缘体之间的物质。常用的半导体材料有硅和锗。纯净的具有完整单晶体结构的半导体材料称为本征半导体。本征半导体的导电能力很弱,其原子之间的共价键结构非常稳定,如图5-1,价电子不易脱离束缚而成为自由电子。但是当获得足够的能量后,一些价电子可能挣脱共价键的束缚游离出来,成为自由电子,当有外电场作用时这些自由电子就可以参
2、与导电。另外,当价电子游离出来以后,会在原来位置上留下一个“空位”,使得这个共价键不稳定,能吸引其他电子来填充,这部分电子移动相当于“空位”向相反方向移动,这些空位我们称为空穴,空穴带正电。,1本征半导体和掺杂半导体,图5-1 本征半导体的共价键结构和空穴电流的产生,图5-2 N型半导体,若掺入五价元素,如磷(P),就形成了N型半导体。由于磷原子有5个价电子,其最外层的四个电子与相邻的4个硅(或锗)原子组成共价键结构,有1个价电子游离于共价键之外,成为自由电子,如图5-2所示。每掺入一个磷原子就会产生一个自由电子,因此N型半导体中自由电子的浓度大大增加。与此同时,还存在因热激发产生的少量自由电
3、子和空穴。由于自由电子的数目远大于空穴的数目,所以自由电子是多数载流子,空穴是少数载流子。,图5-3 P型半导体,同理,若在硅(或锗)晶体中掺入微量的三价元素,如硼(B),就形成了P型半导体,如图5-3。不难看出P型半导体多数载流子是空穴,少数载流子是自由电子。,(1)PN结的形成:把P型半导体和N型半导体用特殊的工艺结合在一起时,N区中浓度较高的自由电子会扩散到P区,并与P型半导体中空穴复合,在N区一侧留下带正电的净电荷区。同时,P区浓度较高的空穴会扩散到N区中并与自由电子复合,在P区形成带负电的净电荷区。从而在交界面处形成一个由N区指向P区的内电场。该内电场对多数载流子继续扩散起阻碍作用,
4、对双方少数载流子的漂移运动起推动作用。当多数载流子扩散数量与少数载流子漂移数量相同时,内电场宽度和强度保持稳定。这种在P型半导体和N型半导体交界面处形成的稳定的内电场称为PN结。如图5-4所示。,2.PN结:,结,图5-4 PN结的形成,(二)PN结的特性:PN结有一个非常重要的导电特性:单向导电性。1)PN结加正向电压正向导通 如图5-5a所示,电源正极接P区,负极接N区,称为正向电压,指示灯亮,说明PN结导通。2)PN结加反向电压反向截止 如图5-5b所示,电源负极接P区,正极接N区,称为反向电压,指示灯不亮,说明PN结截止。,图5-5a PN 结外加正向电压 图5-5b PN 结外加反向
5、电压,结,5.1.2 二极管,1 结构,在一个PN结的P区和N区各接出一条引线,再封装在管壳内,就制成一只二极管,如图5-6a所示,N区引出端为阴极(负极),P区引出端为阳极(正极),其文字符号为VD,图形符号如图5-6b所示。图5-7是几种常见的二极管的外形。,图5-7几种常见的二极管的外型,图5-6 二极管的结构与符号,5.1.2 二极管,2类型二极管的分类方法很多,根据不同的制造工艺及结构,二极管可分点接触型、面接触型及平面型二极管;根据材料不同,可分为硅二极管和锗二极管两类;根据用途不同,又可分为普通二极管、整流二极管、稳压二极管等。3型号按国家标准GB294-74规定,二极管的型号由
6、五部分组成,如表5-1所示。常见的二极管有2AP7、2DZ54C等,根据表5-1可自行判断它们的意义。,5.1.2 二极管,4伏安特性如图5-8所示。(1)正向特性 位于图中第一象限。当二极管承受很小的正向电压时,二极管并不能导通,这是因为外电场太弱,不足以克服内电场的阻挡作用,这段区域称为死区,与此相对应的电压叫死区电压,一般硅二极管的死区电压约0.5伏,锗二极管约0.2伏。当正向电压上升到大于死区电压时,二极管开始导通,正向电流随正向电压上升很快。二极管导通后的正向电阻很小,其正向压降很小,一般硅管约0.7V,锗管约为伏。(2)反向特性位于图中第三象限。当二极管承受反向电压时,二极管中只有
7、很小的反向电流,是由少数载流子漂移形成。受温度影响敏感,反向电流越小,二极管温度稳定性越好。硅管反向电流比锗管小。所以硅管温度稳定性好。当反向电压增大到超过某个值时,反向电流急剧加大,二极管被击穿,可能被损坏。所以一般二极管不允许工作在这个区域。,图5-8二极管的电压、电流特性曲线,5.1.2 二极管,5.1.2 二极管,5二极管的主要参数二极管的参数是选择和使用二极管的重要依据。(1)最大正向电流IFM:指在规定的散热条件下,二极管长期安全运行时允许通过的最大正向电流的平均值。如果实际工作时正向电流的平均值超过此值,二极管可能会因过热而损坏。(2)最高反向工作电压URM:指二极管允许承受的最
8、高反向电压。一般规定最高反向工作电压为反向击穿电压的二分之一。,5.2三极管,知识分布网络,三极管,三极管的电流放大作用,三极管的结构、符号和型号,三极管的特性曲线,三极管的主要参数,三极管的输入特性,三极管的输出特性,三极管的结构、符号和型号,1三极管的结构图5-11是几种常见的国产三极管的封装和外形。在一块极薄的硅或锗基片上通过一定的工艺制做出两个PN结就构成了三层半导体结构,从三层半导体各引出一根引线就是三极管的三个极,再封装在管壳里,就构成晶体三极管。三个电极分别叫做发射极E、基极B、集电极C,与之对应的每层半导体分别称为发射区、基区、集电区。发射区与基区之间的PN结为发射结,集电区和
9、基区之间的PN结为集电结。基区是P型半导体的称为NPN型三极管,基区是N型半导体的称为PNP型三极管。,图5-11几种三极管的外形和封装,三极管的结构、符号和型号,三极管的结构和表示符号如图5-12所示。晶体三极管的内部结构特点是:发射区的掺杂浓度大于集电区;基区非常薄且掺杂很轻;集电结面积较发射结大,它们并不对称,所以集电极和发射极不能互换。,图5-12 三极管的结构和符号,三极管的结构、符号和型号,2三极管的型号按国家标准GB294-74规定,三极管的型号同二极管一样也由五部分组成,如表5-3所示。,表5-3 三极管的型号组成及其意义,常见的二极管有3DG130C、3AX52B等,根据表5
10、-2可自行判断它们的意义。,三极管的电流放大作用,当给三极管的发射结加正向电压,集电结加反向电压时,三极管具有电流放大作用,电路形式如图5-13所示。1、静态电流放大作用 集电极电流一般是基极电流30-100倍,称为静态电流放大系数。2、动态电流放大作用 称为动态电流放大系数,与静态电流放大系数近似相等,一般取为一致。,图5-13 三极管电流放大作用电路,三极管的特性曲线,表示三极管各极电流和极间电压关系的曲线称为晶体管的特性曲线,它是了解三极管外部性能和分析三极管工作状态的重要依据。、输入特性输入特性是指当三极管集电极发射极之间的电压UCE 为定值,基极电流IB 和基极-发射极之间电压UBE
11、之间的关系。其特性曲线如图5-15所示。,三极管的特性曲线,、输出特性输出特性是指当三极管的基极电流IB为定值,集电极电流IC与集电极发射极之间的电压UCE 之间的关系,其特性曲线如图5-16所示。由图可见,当基极电流不变时集电极电流基本不随集射极之间的电压UCE变化而变化,所以说从三极管的集电极看进去具有恒流源特性。不同的基极电流IB对应不同的输出特性曲线,从而形成一个曲线簇,可把输出特性曲线簇分成三个区域,不同的区域对应着不同的工作状态。,三极管的主要参数,晶体管的参数表示其性能优劣和适用范围,是合理选择和正确使用的依据。、共发射极电流放大系数表示三极管的电流放大能力。不同型号的管子其不同
12、,范围在20-200之间,可根据需要选用。、集电极-发射极反向饱和电流 ICE0:也叫穿透电流。是指基极开路时集电极和发射极间加规定反向电压时的反向电流。该电流越小,三极管温度稳定性越好。、极限参数1)集电极最大允许电流IC:集电极电流过大时三极管的会下降,一般规定当下降到额定值2/3时的集电极电流称为集电极最大允许电流IC。2)集电极发射极反向击穿电压U(BR)CE0:指在基极开路的情况下加在集电极和发射极之间的最大允许工作电压。3)集电极最大允许耗散功率PCM:,5.3共射极放大电路,知识分布网络,共射极放大电路,共射极放大电路的组成,电路的静态分析,电路的动态分析,电阻分类及标识,电阻分
13、类及标识,电阻分类及标识,电阻分类及标识,电阻分类及标识,5.3.1 电路组成,共射极单管放大电路如图5-18所示。为使电路简化,发射结和集电结共用一个电源,电阻RB将电源引至发射结。为发射结提供正偏电压。由于三极管的发射极为输入和输出端共用,所以称为共射极放大电路。电路中各元件的作用见表5-6。,图5-18 共射极基本放大电路,5.3.1 电路组成,表5-6,5.3.2 电路分析,1、放大器中电压、电流符号的规定由于放大电路既有直流电源作用又有交流信号源作用,所以在放大电路中既有直流分量,又有交流分量。为了清楚地表示不同的物理量,表5-7将电路中出现的有关电量的符号列了出来。,表5-7 电压
14、、电流符号的规定,5.3.2 电路分析,2、静态工作点的作用与估算1)静态工作点的作用所谓静态指的是放大器在没有交流信号输入时的工作状态。这时三极管的基极电流IB、集电极电流IC、基极与发射极间的电压UBE和集电极与发射极间的电压UCE的值叫静态值。又称为静态工作点。2)静态工作点的估算在放大电路中仅有直流分量作用的等效电路称为直流通路。如图5-20。在直流通路中可近似估算静态工作点。,5.3.2 电路分析,3放大电路的电压放大倍数、输入电阻和输出电阻放大电路的作用是放大交流小信号。电压放大倍数是表示其放大能力的参数,输入电阻和输出电阻是表示放大电路性能的参数。1)放大电路的电压放大倍数Au的
15、近似估算输入电阻、输出电阻和电压放大倍数都反映的是交流分量的关系,所以需要通过交流通路来进行分析。所谓交流通路是指在有交流信号输入(动态)时,放大电路的交流信号流通的路径。因电容器通交流信号而直流电源的内阻又很小,因此在画交流通路时,把电容器和直流电源都视为短路,如图5-21(a)所示。,当三极管工作在小信号状态时,三极管可用微变等效模型替代,这时的交流通路称为微变等效电路,如图5-21(b)所示,其输入端可等效成一个电阻,由输入特性曲线可看出,在静态工作点附近的微小变化范围内,输入特性曲线可近似看作直线,其电压变化量与电流变化量之比近似为常数,所以可等效为一个电阻rbe。rbe为三极管发射结
16、动态等效电阻,其值可用经验公式计算(5-4)放大器的电压放大倍数等于输出电压与输入电压的比值。2)放大电路输出电阻的近似估算 对负载来说,放大器相当于一个具有内阻的信号源,这个内阻就是放大电路的输出电阻RO,从图5-21可看出,R0RC(5-9)放大器的输出电阻越小放大器内部消耗越小;当负载变化时负载电压变化越小,称为放大器带负载能力越强,所以输出电阻越小越好。,5.3.2 电路分析,5.4 分压式偏置放大电路,知识分布网络,分压式偏置放大电路,用近似估算法分析电路,分压式偏置放大电路的组成,稳定静态工作点的原理,电路如图5-22a所示。其特点是:第一、电阻RB1、RB2组成分压电路,电源电压
17、UCC经分压后,加至晶体管的基极,所以这种放大电路称为分压式偏置放大电路。只要电源电压UCC和RB1、RB2保持不变,基极电位UBQ 就是固定值,不随温度变化。第二、晶体管的发射极经过电阻RE接地,且与其并联一个旁路电容CE。利用电容“隔直通交”的特性,RE在静态时起作用,而在动态时被CE短路,对交流信号来说,晶体管发射极相当于接地。,1、分压式偏置放大电路的组成,2、稳定静态工作点的原理,图5-22b是分压式偏置放大电路的直流通路,由于UBQ与温度参数无关,不受温度影响;另有UBEQ=UBQ-UEQ,发射极电位UEQ=IEQRE。其稳定工作点的过程如下:上述过程表明,分压式偏置放大电路稳定静
18、态工作点的关键是利用IE的微小变化,在电阻RE上产生电压降,并反送回输入回路,使UBE下降,使IB、IC向相反方向变化。这个过程实质上是利用了负反馈作用,达到稳定工作点的目的。有关负反馈的概念将在下一节介绍。这种负反馈在直流静态条件下,起稳定静态工作点的作用,但在交流动态条件下,削弱了电压放大倍数。为此,与电阻RE并联了一个容量较大的电容器CE,使RE在交流通路中被短路,不起作用,避免了电压放大倍数的损失。,5.5多级放大电路,知识分布网络,多级放大电路,多级放大电路的耦合方式,多级放大电路的放大倍数,估算多级放大电路的输入输出电阻,多级放大电路的耦合方式,多级放大器级与级之间的连接方式称为耦
19、合方式。常见的耦合方式有:阻容耦合、变压器耦合、直接耦合和光电耦合四种。1 阻容耦合阻容耦合放大电路如图5-23所示,这种方式的特点是通过电容将前后级的直流隔开,避免静态工作点的相互影响;但对于频率较低的信号电容阻抗较大,所以阻容耦合多级放大器不能用于放大缓慢变化信号,更不能放大直流信号;另外由于在集成电路中无法制作大容量电容器而使得这种电路无法集成化。2 变压器耦合变压器耦合也有避免静态工作点的相互影响的作用,而且利用变压器的阻抗变换作用可实现阻抗匹配。但变压器体积大,不方便集成;同样它也不能放大直流信号。,多级放大电路的耦合方式,多级放大电路的耦合方式,3 直接耦合直接耦合可放大直流信号,
20、方便集成,目前在集成电路中应用非常广泛。但直接耦合的各级静态工作点相互影响,不便于调试,且存在零点漂移现象,所谓零点漂移是当输入信号为零时,在输出端出现的不规则信号。这种现象会使输出信号产生失真。由于零点漂移信号通常是变化缓慢的信号,所以阻容耦合和变压器耦合电路具有抑制零点漂移的作用。4 光电耦合光电耦合以光电耦合器为媒介来实现电信号的耦合和传输,光电耦合既可传输交流信号又可传输直流信号,而且抗干扰能力强,易于集成化,广泛应用在集成电路中。,图5-25 直接耦合放大电路,多级放大电路的放大倍数、输入、输出电阻,对于多级放大器,前一级的输出信号是后一级的输入信号。多级放大器的放大倍数应为:总放大
21、倍数等于各级放大倍数的乘积。但在计算各级放大倍数时要考虑前后级的相互影响。后级放大器的输入电阻是前一级放大器负载的一部分。多级放大器的输入电阻Ri等于第一级放大器的输入电阻。多级放大器的输出电阻R0等于最后一级放大器的输出电阻。,5.6放大电路中的负反馈,知识分布网络,放大电路中的负反馈,反馈的基本概念,反馈的类型和判断,负反馈对放大电路的影响,射极输出器,射极输出器的特点,射极输出器的应用,反馈的类型和判断,1、反馈的基本概念,2、反馈的类型及判断,(1)直流反馈和交流反馈对直流量起反馈作用的为直流反馈,对交流量起反馈作用的为交流反馈。直、交流反馈的判断一般看反馈环节中有、无电容,根据电容的
22、“隔直通交”作用来进行判断。(2)正反馈和负反馈 如果反馈信号与输入信号极性相同,反馈信号与外加输入信号叠加求和后,使净输入信号增强,叫做正反馈。正反馈使输出信号和输入信号相互促进不断增强,一般用于振荡电路中;若反馈信号与输入信号极性相反,使净输入信号减小,叫做负反馈。负反馈使放大器电压放大倍数降低但有改善放大电路性能的作用。正反馈和负反馈的判别一般采用瞬时极性法,具体步骤如下:先假设输入信号在某一瞬间对地为“+”;从输入端到输出端依次标出放大器各点的瞬时极性;三极管各电极的相位关系是:发射极信号与基极输入信号瞬时极性相同,集电极瞬时极性与基极瞬时极性相反。将反馈信号的极性与输入信号进行比较,
23、若反馈信号引在输入端的基极,反馈信号的极性与输入信号极性相同为正反馈,反之,为负反馈;若反馈信号引在输入端的发射极,反馈信号的极性与输入信号极性相同为负反馈,反之,为正反馈。,反馈的类型和判断,2、反馈的类型及判断,(3)电压反馈和电流反馈按照反馈电路在输出端对输出信号采样的不同,可确定是电压反馈还是电流反馈。反馈信号与输出电压成正比的称为电压反馈;反馈信号与输出电流成正比的称为电流反馈。一般反馈电路接在电压输出端为电压反馈,不接在电压输出端为电流反馈。(4)串联反馈和并联反馈根据反馈信号在放大器输入端与输入信号连接方式的不同,可确定是串联反馈还是并联反馈。对常用的共发射极放大器,通常可以从反
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二极管 三极管 入门 基础知识 图解
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5684573.html