《空间向量的数乘运算》.ppt
《《空间向量的数乘运算》.ppt》由会员分享,可在线阅读,更多相关《《空间向量的数乘运算》.ppt(42页珍藏版)》请在三一办公上搜索。
1、3.1.2 空间向量的数乘运算,O,B,结论:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.,一、空间向量数乘运算,1.实数 与空间向量 的乘积 仍然是一个向量.,当 时,,当 时,,与向量 方向相同;,与向量 方向相同;,是零向量.,当 时,,(1)方向:,(2)大小:,的长度是 的长度的 倍.,2.空间向量的数乘运算满足分配律及结合律,问题2:平面向量中,,的充要条件是:存在,唯一的实数,使,能否推广到空间向量中呢?,问题1:若,则,所在直线有那些位置关系?,零向量与任意向量共线.,由此可判断空间中两直线平
2、行或三点共线问题,共线向量定理:对空间任意两个向量,的充要条件是存在唯一实数,使,性质,判定,如图,l 为经过已知点A且平行已知非零向量 的直线,若点P是直线l上任意一点,则,对空间任意一点O,所以,即,若在l上取 则有,和都称为空间直线的向量表示式,空间任意直线由空间一点及直线的方向向量唯一决定.由此可判断空间任意三点共线。,l,A,B,P,O,由 知存在唯一的t,满足,因为,所以,特别的,当t=时,,则有,进一步,,t,1-t,P点为A,B 的中点,l,A,B,P,O,判定空间中三点A、B、C共线的常用方法:,(1)只需得到存在实数,使,(2)对空间任意点O,存在实数t,使,特别地,当t=
3、1/2时,,此时,点C恰为线段AB的,中点,A、B、P三点共线,结论1:,练习1.对于空间任意一点O,下列命题正确的是:A.若,则P、A、B共线B.若,则P是AB的中点C.若,则P、A、B不共线D.若,则P、A、B共线,A、B、P三点共线,A,O,A,B,P,分析:证三点共线可尝试用向量来分析.,三、共面向量:,1.共面向量:平行于同一平面的向量,叫做共面向量.,注意:空间任意两个向量是共面的,但空间任意三个向量,既可能共面,也可能不共面,由平面向量基本定理知,如果,是平面内的两个不共线的向量,那么对于这一平面内的任意向量,有且只有一对实数,使,如果空间向量 与两不共线向量,共面,那么可将三个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间向量的数乘运算 空间 向量 运算
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5681660.html