【教学课件】第四章常用概率分布.ppt
《【教学课件】第四章常用概率分布.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第四章常用概率分布.ppt(117页珍藏版)》请在三一办公上搜索。
1、第四章 常用概率分布,为了 便于读者理解统计分析的基本原理,正确掌握和应用以后各章所介绍的统计分析方法,本章在介绍概率论中最基本的两个概念事件、概率的基础上,重点介绍生物科学研究中常用的几种随机变量的概率分布正态分布、二项分布、波松分布以及样本平均数的抽样分布和t分布。,下一张,主 页,退 出,上一张,第一节 事件与概率,一、事 件(一)必然现象与随机现象 在自然界与生产实践和科学试验中,人们会观察到各种各样的现象,把它们归纳起来,大体上分为两大类:,下一张,主 页,退 出,上一张,一类是可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果总是确定的,必然发生(或必然不发生)。这类现
2、象称为必然现象(inevitable phenomena)或确定性现象(definite phenomena)。另一类是事前不可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果未必相同。这类在个别试验中其结果呈现偶然性、不确定性现象,称为随机现象(random phenomena)或 不 确 定 性 现 象(indefinite phenomena)。,下一张,主 页,退 出,上一张,随机现象或不确定性现象,有如下特点:在一定的条件实现时,有多种可能的结果发生,事前人们不能预言将出现哪种结果;对一次或少数几次观察或试验而言,其结果呈现偶然性、不确定性;但在相同条件下进行大量重复试验
3、时,其试验结果却呈现出某种固有的特定的规律性频率的稳定性,通常称之为随机现象的统计规律性。,下一张,主 页,退 出,上一张,(二)随机试验与随机事件 1、随机试验 通常我们把根据某一研究目的,在一定条件下对自然现象所进行的观察或试验统称为试验(trial)。而一个试验如果满足下述三个特性,则 称 其 为 一个 随机试验(random trial),简称试验:,下一张,主 页,退 出,上一张,(1)试验可以在相同条件下多次重复进行;(2)每次试验的可能结果不止一个,并且事先知道会有哪些可能的结果;(3)每次 试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果
4、。例如在一定孵化条件下,孵化6枚种蛋,观察其出雏情况;又如观察两头临产妊娠母牛所产犊牛的性别情况,它们都具有随机试验的三个特征,因此都是随机试验。,下一张,主 页,退 出,上一张,2、随机事件 随机试验的每一种可能结果,在一定条件下可 能 发 生,也 可 能 不 发生,称为随机事件(random event),简称 事 件(event),通常用A、B、C等来表示。(1)基本事件 我 们 把 不 能 再 分的事件称为基本事件(elementary event),也 称 为 样本点(sample point)。,下一张,主 页,退 出,上一张,例如,在编号为1、2、3、10 的十头猪中随机抽取1头
5、,有10种不同的可能结果:“取 得 一 个 编 号 是 1”、“取得一个编号是2”、“取得一个编号是10”,这10个事件都是不可能再分的事件,它们都是基本事件。由若干个基本事件组合而成的事件称为 复合事件(compound event)。如“取得一个编号是 2的倍数”是一个复合事件,它由“取得一个编号是2”、“是4”、“是6、“是8”、“是10”5个基本事件组合而成。,下一张,主 页,退 出,上一张,(2)必然事件 我们把在一定条件下必然会发生的事件称为必然事件(certain event),用表示。例如,在严格按妊娠期母猪饲养管理的要求饲养的条件下,妊娠正常的母猪经114天左右产仔,就是一个
6、必然事件。,下一张,主 页,退 出,上一张,(3)不可能事件 我们把在一定条件下不可能发生的事件称为不可能事件(impossible event),用表示。例如,在满足一定孵化条件下,从石头孵化出雏鸡,就是一个不可能事件。必然事件与不可能事件实际上是确定性现象,即它们不是随机事件,但 是 为了方便起见,我们把它们看作为两个特殊的随机事件。,下一张,主 页,退 出,上一张,二、概 率(一)概率的统计定义 研究随机试验,仅知道可能发生哪些随机事件是不够的,还需了解各种随机事件发生的可能性大小,以揭示这些事件的内在的统计规律性,从而指导实践。这就要求有一个能够刻划事件发生可能性大小的数量指标,这指标
7、应该是事件本身所固有的,且不随人的主观意志而改变,人们称之为概率(probability)。事件A的概率记为P(A)。,下一张,主 页,退 出,上一张,概率的统计定义 在相同条件下进行n次重复试验,如果随机事件A发生的次数为m,那么m/n称为随机事件A的频率(frequency);当试验重复数n逐渐增大时,随机事件A的频率越来越稳定地接近某一数值 p,那么 就 把 p称为随机事件A的概率。,下一张,主 页,退 出,上一张,这 样 定 义 的 概 率 称 为 统 计 概 率(statistics probability),或者称后验概率(posterior probability)。例如 为了确
8、定抛掷一枚硬币发生正面朝上这个事件的概率,历史上有人作过成千上万次抛掷硬币的试验。在表41中列出了他们的试验记录。,下一张,主 页,退 出,上一张,表41 抛掷一枚硬币发生正面朝上的 试验记录,下一张,主 页,退 出,上一张,从表4-1可看出,随着实验次数的增多,正面朝上这个事件发生的频率越来越稳定地接近0.5,我们就把0.5作为这个事件的概率。在一般情况下,随机事件的概率p是不可能准确得到的。通常以试验次数n充分大时随机事件A的频率作为该随机事件概率的近似值。即 P(A)=pm/n(n充分大)(4-1),下一张,主 页,退 出,上一张,(二)概率的古典定义 对于某些随机事件,用不着进行多次重
9、复试验来确定其概率,而是根据随机事件本身的特性直接计算其概率。有很多随机试验具有以下特征:1、试验的所有可能结果只有有限个,即样本空间中的基本事件只有有限个;2、各 个 试验的可能结果出现的可能性相等,即所有基本事件的发生是等可能的;3、试验的所有可能结果两两互不相容。,下一张,主 页,退 出,上一张,具有上述特征的随机试验,称为古典概型(classical model)。对于古典概型,概率的定义如下:设样本空间由 n 个等可能的基本事件所构成,其中事件A包含有m个基本事件,则事件A的概率为m/n,即 P(A)=m/n(4-2),下一张,主 页,退 出,上一张,这样定义的概率称为古典概率(cl
10、assical probability)或先验概率(prior probability)。【例4.1】在编号为1、2、3、10的十头猪中随机抽取1头,求下列随机事件的概率。(1)A=“抽得一个编号4”;(2)B=“抽得一个编号是2的倍数”。因为该试验样本空间由10个等可能的基本事件构成,即n=10,而事件A所包含的基本事件有4个,即抽得编号为1,2,3,4中的任何一个,事件A便发生,于是mA=4,所以,下一张,主 页,退 出,上一张,P(A)=mA/n=4/10=0.4 同理,事件B所包含的基本事件数mB=5,即抽得编号为2,4,6,8,10中的任何一个,事件B便发生,故 P(B)=mB/n=
11、5/10=0.5。【例4.2】在N头奶牛中,有M头曾有流产史,从这群奶牛中任意抽出n头奶牛,试求:(1)其中恰有m头有流产史奶牛的概率是多少?(2)若N=30,M=8,n=10,m=2,其概率是多少?,下一张,主 页,退 出,上一张,我们把从有M头奶牛曾有流产史的N头奶牛中任意抽出n头奶牛,其中恰有m头有流产史这一事件 记为A,因为 从 N 头 奶 牛 中 任 意 抽 出 n 头 奶牛的基本事件总数为;事件A所包含的基本事件数为;因此所求事件A的概率为:,下一张,主 页,退 出,上一张,将N=30,M=8,n=10,m=2代入上式,得=0.0695 即在30头奶牛中有8头曾有流产史,从这群奶牛
12、随机抽出 10 头奶牛其中有2头曾有流产史的概率为6.95%。,下一张,主 页,退 出,上一张,(三)概率的性质 1、对于任何事件A,有0P(A)1;2、必然事件的概率为1,即P()=1;3、不可能事件的概率为0,即P()=0。,三、小概率事件实际不可能性原理 随机事件的概率表示了随机事件在一次试验中出现的可能性大小。若随机事件的概率很小,例如小于0.05、0.01、0.001,称之为小概率事件。,下一张,主 页,退 出,上一张,小概率事件虽然不是不可能事件,但在一次试验中出现的可能性很小,不出现的可能性很 大,以 至于实际上可以看成是不可能发生的。在统计学上,把小概率事件在一次试验中看成是实
13、际不可能发生的事件称为小概率事件实际不可能性原理,亦称为小概率原理。小概率事件实际不可能性原理是统计学上进行假设检验(显著性检验)的基本依据。,下一张,主 页,退 出,上一张,第二节 概率分布,事件的概率表示了一次试验某一个结果发生的可能性大小。若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即必须知道随机试验的概率分布(probability distribution)。为了深入研究随机试验,我 们 先引入随机变量(random variable)的概念。,下一张,主 页,退 出,上一张,一、随机变量 作一次试验,其结果有多种可能。每一种可能结果都可用一个数来表示,把
14、这些数作为变量x的取值范围,则试验结果可用变量x来表示。【例4.3】对100头病畜用某种药物进行治疗,其可能结果是“0头治愈”、“1头治愈”、“2头治愈”、“”、“100头治愈”。若用x表示治愈头数,则x的取值为0、1、2、100。,下一张,主 页,退 出,上一张,【例4.4】孵化一枚种蛋可能结果只有两种,即“孵出小鸡”与“未孵出小鸡”。若用变量x表示试验的两种结果,则可令x=0表示“未孵出小鸡”,x=1表示“孵出小鸡”。【例4.5】测定某品种猪初生重,表示测定 结 果 的 变 量 x 所 取的值为一个特定范围(a,b),如0.51.5kg,x值可以是这个范围内的任何实数。,下一张,主 页,退
15、 出,上一张,如果表示试验结果的变量x,其可能取值至多为可列个,且 以各种确定的概率取这些不同的值,则 称 x 为 离 散 型 随 机 变 量(discrete random variable);如果表示试验结果的变量x,其可能取值为某范围内的任何数值,且x在其取值范围内的任一区间中取值时,其概率是确定的,则称x为 连续 型 随 机 变 量(continuous random variable)。,下一张,主 页,退 出,上一张,二、离散型随机变量的概率分布 要了解离散型随机变量x的统计规律,就必须 知 道它的一切可能值xi及取每种可能值的概率pi。如果我们将离散型随机变量x的一切可能取值xi
16、(i=1,2,),及其对应的概率pi,记作 P(x=xi)=pi i=1,2,(43)则称(43)式为离散型随机变量x的概率分布或分布。常用 分 布 列(distribution series)来表示离散型随机变量:,下一张,主 页,退 出,上一张,x1 x2 xn.p1 p2 pn 显然离散型随机变量的概率分布具有pi0和pi=1这两个基本性质。三、连续型随机变量的概率分布 连续型随机变量(如体长、体重、蛋重)的概率分布不能用分布列来表示,因为其可能取的值是不可数的。我们改用随机变量x在某个区间内取值的概率P(axb)来表示。下面通过频率分布密度曲线予以说明。,下一张,主 页,退 出,上一张
17、,由表27作126头基础母羊体重资料的频率分布直方图,见图41,图中纵座标取频率与组距的比值。可以设想,如果样本取得越来越大(n+),组分得越来越细(i0),某一范围内的频率将趋近于一个稳定值 概率。这时,频率分布直方图各个直方上端中点的联线 频率分布折线将逐渐趋向于一条曲线,换句话说,当n+、i0时,频率分布折线,下一张,主 页,退 出,上一张,的极限是一条稳定的函数曲线。对于样本是取自连续型随机变量的情况,这条函数曲线将是光滑的。这条曲线排除了抽样和测量的误差,完 全 反映了基础母羊体重的变动规律。这条曲线叫概率分布密度曲线,相应的函数叫 概率分布密度函数。,下一张,主 页,退 出,上一张
18、,(44)式 为 连 续 型 随机变量 x 在 区间a,b)上取值概率的表达式。可见,连续型随机变量的概率由概率分布密度函数确定。图4-1 表2-7资料的分布曲线,若记体 重概率分布密度函数为f(x),则x取值于区间a,b)的概率为图中阴影部分的面积,即 P(axb)=(4-4),连续型随机变量概率分布的性质:1、分布密度函数总是大于或等于0,即f(x)0;2、当随机变量x取某一特定值时,其概率等于0;即(c为任意实数)因而,对于连续型随机变量,仅研究其在某一个区间内取值的概率,而不去讨论取某一个值的概率。,下一张,主 页,退 出,上一张,3、在 一次试验中 随机变量x之取值 必在-x+范围内
19、,为一必然事件。所以(4-5)(45)式表示分布密度曲线下、横轴上的全 部面积为1。,下一张,主 页,退 出,上一张,第三节 正态分布,正态分布是一种很重要的连续型随机变量的概率分布。生物现象中有许多变量是服从或近似服从正态分布的。许多统计分析方法都是以正态分布为基础的。此外,还有不少随机变量的概率分布在一定条件下以正态分布为其极限分布。因此在统计学中,正态分布无论在理论研究上还是实际应用中,均占有重要的地位。,下一张,主 页,退 出,上一张,一、正态分布的定义及其特征(一)正态分布的定义 若连续型随机变量x的概率分布密度函数为(4-6)其中为平均数,2为方差,则称随机变量x服从正态分布(no
20、rmal distribution),记为xN(,2)。相应的概率分布函数为(4-7),下一张,主 页,退 出,上一张,分布密度曲线如图42所示。(二)正态分布的特征 1、正态分布密度曲线是单峰、对称的悬钟形曲线,对称轴为x=;2、f(x)在 x=处达 到 极 大,极大值;3、f(x)是非负函数,以x轴为渐近线,分布从-至+;,下一张,主 页,退 出,上一张,4、曲线在x=处各有一个拐点,即曲线在(-,-)和(+,+)区间上是下凸的,在-,+区间内是上凸的;5、正态分布有两个参数,即平均数和标准差。是位置参数,如图43所示。当恒定时,愈大,则曲线沿x轴愈向右移动;反之,愈小,曲线沿x轴愈向左移
21、动。是变异度参数,如图44所示。当恒定时,愈大,表示 x 的取值愈分散,曲线愈“胖”;愈小,x的取值愈集中在附近,曲线愈“瘦”。,下一张,主 页,退 出,上一张,6、分布密度曲线与横轴所夹的面积为1,即:,下一张,主 页,退 出,上一张,二、标准正态分布 由上述正态分布的特征可知,正态分布是依赖于参数和2(或)的一簇 分布,正态曲线之位置及形态随和2的不同而不同。这就给研究具体的正态总体带来困难,需将一般的N(,2)转 换为=0,2=1的正态分布。,我们称=0,2=1的正态分布为标准正态分布(standard normal distribution)。标准正态分布的概率密度函数及分布函数分别记
22、作(u)和(u),由(4-6)及(4-7)式得:(4-8)(4-9)随机变量u服从标准正态分布,记作uN(0,1),分布密度曲线如图45所示。,下一张,主 页,退 出,上一张,对于任何一个服从正态分布N(,2)的随机变量x,都可以通过标准化变换:u=(x-)(4-10)将 其变换为服从标准正态分布的随机变量u。u 称 为 标 准 正 态变量或标准正态离差(standard normal deviate)。,下一张,主 页,退 出,上一张,三、正态分布的概率计算(一)标准正态分布的概率计算 设u服从标准正态分布,则 u 在u1,u2)何内取值的概率为:(u2)(u1)(4-11)而(u1)与(u
23、2)可由附表1查得。,下一张,主 页,退 出,上一张,例如,u=1.75,1.7放在第一列0.05放在第一行。在附表1中,1.7所在行与 0.05 所在列相交处的数值为0.95994,即(1.75)=0.95994 有 时 会 遇 到 给 定(u)值,例 如(u)=0.284,反过来查u值。这只要在附表1中找到与 0.284 最接近的值0.2843,对应行的第一列数-0.5,对应列的第一行数 值 0.07,即相应的u值为 u=-0.57,即(-0.57)=0.284 如果要求更精确的u值,可用线性插值法计算。,下一张,主 页,退 出,上一张,由(4-11)式及正态分布的对称性可推出下列关系式,
24、再借助附表1,便能很方便地计算有关概率:P(0uu1)(u1)-0.5 P(uu1)=(-u1)P(uu1)=2(-u1)(4-12)P(uu11-2(-u1)P(u1uu2)(u2)-(u1),下一张,主 页,退 出,上一张,【例4.6】已知uN(0,1),试求:(1)P(u-1.64)?(2)P(u2.58)=?(3)P(u2.56)=?(4)P(0.34u1.53)=?,下一张,主 页,退 出,上一张,利用(4-12)式,查附表1得:(1)P(u-1.64)=0.05050(2)P(u2.58)=(-2.58)=0.024940(3)P(u2.56)=2(-2.56)=20.005234
25、=0.010468(4)P(0.34u1.53)=(1.53)-(0.34)=0.93669-0.6331=0.30389,下一张,主 页,退 出,上一张,关于标准正态分布,以下几种概率应当熟记:P(-1u1)=0.6826 P(-2u2)=0.9545 P(-3u3)=0.9973 P(-1.96u1.96)=0.95P(-2.58u2.58)=0.99 图46 标准正态分布的三个常用概率,下一张,主 页,退 出,上一张,u变量在上述区间以外取值的概率分别为:P(u1)=2(-1)=1-P(-1u1)=1-0.6826=0.3174 P(u2)=2(-2)=1-P(-2u2)=1-0.954
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学课件 教学 课件 第四 常用 概率 分布
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5665000.html