蚁群算法ppt课件.ppt
《蚁群算法ppt课件.ppt》由会员分享,可在线阅读,更多相关《蚁群算法ppt课件.ppt(36页珍藏版)》请在三一办公上搜索。
1、1,蚁群算法,Yuehui ChenSchool of Inform.Sci.and Eng.University of Jinan,2011http:/,2,3,蚁群优化算法起源,20世纪90年代意大利学者MDorigo,VManiezzo,AColorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法 蚁群算法,是群智能理论研究领域的一种主要算法。用该方法求解TSP问题、分配问题、job-shop调度问题,取得了较好的试验结果虽然研究时间不长,但是现在的研究显示出,蚁群算法在求解复杂优化问题(特别是离散优化问题)方面有一定优势,表明它是一种有发
2、展前景的算法,4,蚁群优化算法研究背景,群智能理论研究领域有两种主要的算法:蚁群算法(Ant Colony Optimization,ACO)和微粒群算法(Particle Swarm Optimization,PSO)。前者是对蚂蚁群落食物采集过程的模拟,已成功应用于许多离散优化问题。微粒群算法也是起源于对简单社会系统的模拟,最初是模拟鸟群觅食的过程,但后来发现它是一种很好的优化工具。,5,蚁群优化算法研究背景,与大多数基于梯度的应用优化算法不同,群智能依靠的是概率搜索算法。虽然概率搜索算法通常要采用较多的评价函数,但是与梯度方法及传统的演化算法相比,其优点还是显著的,主要表现在以下几个方面
3、:1 无集中控制约束,不会因个别个体的故障影响整个问题 的求解,确保了系统具备更强的鲁棒性 2 以非直接的信息交流方式确保了系统的扩展性 3 并行分布式算法模型,可充分利用多处理器 4 对问题定义的连续性无特殊要求 5 算法实现简单,6,蚁群优化算法研究背景,群智能方法易于实现,算法中仅涉及各种基本的数学操作,其数据处理过程对CPU和内存的要求也不高。而且,这种方法只需目标函数的输出值,而无需其梯度信息。已完成的群智能理论和应用方法研究证明群智能方法是一种能够有效解决大多数全局优化问题的新方法。更为重要是,群智能潜在的并行性和分布式特点为处理大量的以数据库形式存在的数据提供了技术保证。无论是从
4、理论研究还是应用研究的角度分析,群智能理论及其应用研究都是具有重要学术意义和现实价值的。,7,蚁群优化算法概念,1 蚁群算法原理2 简化的蚂蚁寻食过程3 自然蚁群与人工蚁群算法4 蚁群算法与TSP问题5 初始的蚁群优化算法基于图的蚁群系统(GBAS)6 一般蚁群算法的框架,8,1 蚁群算法原理,蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象:某一路径上走过的
5、蚂蚁越多,则后来者选择该路径的概率就越大。为了说明蚁群算法的原理,先简要介绍一下蚂蚁搜寻食物的具体过程。在蚁群寻找食物时,它们总能找到一条从食物到巢穴之间的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素。当它们碰到一个还没有走过的路口时就随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激索浓度越低.当后来的蚂蚁再次碰到这个路口的时候选择激素浓度较高路径概率就会相对较大。这样形成一个正反馈。最优路径上的激索浓度越来越大而其它的路径上激素浓度却会随着时间的流逝而消减。最终整个蚁群会找出最优路径。,9,2 简化的蚂蚁寻食过程,蚂蚁从A点出发,速度相同
6、,食物在D点,可能随机选择路线ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位行走一步,本图为经过9个时间单位时的情形:走ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好走到C点,为一半路程。,10,2 简化的蚂蚁寻食过程,本图为从开始算起,经过18个时间单位时的情形:走ABD的蚂蚁到达终点后得到食物又返回了起点A,而走ACD的蚂蚁刚好走到D点。,11,2 简化的蚂蚁寻食过程,假设蚂蚁每经过一处所留下的信息素为一个单位,则经过36个时间单位后,所有开始一起出发的蚂蚁都经过不同路径从D点取得了食物,此时ABD的路线往返了2趟,每一处的信息素为4个单位,而 ACD的路线往返了一趟,每一处的信
7、息素为2个单位,其比值为2:1。寻找食物的过程继续进行,则按信息素的指导,蚁群在ABD路线上增派一只蚂蚁(共2只),而ACD路线上仍然为一只蚂蚁。再经过36个时间单位后,两条线路上的信息素单位积累为12和4,比值为3:1。若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而ACD路线上仍然为一只蚂蚁。再经过36个时间单位后,两条线路上的信息素单位积累为24和6,比值为4:1。若继续进行,则按信息素的指导,最终所有的蚂蚁会放弃ACD路线,而都选择ABD路线。这也就是前面所提到的正反馈效应。,12,3 自然蚁群与人工蚁群算法,基于以上蚁群寻找食物时的最优路径选择问题,可以构造人工蚁群,
8、来解决最优化问题,如TSP问题。人工蚁群中把具有简单功能的工作单元看作蚂蚁。二者的相似之处在于都是优先选择信息素浓度大的路径。较短路径的信息素浓度高,所以能够最终被所有蚂蚁选择,也就是最终的优化结果。两者的区别在于人工蚁群有一定的记忆能力,能够记忆已经访问过的节点。同时,人工蚁群再选择下一条路径的时候是按一定算法规律有意识地寻找最短路径,而不是盲目的。例如在TSP问题中,可以预先知道当前城市到下一个目的地的距离。,13,4 蚁群算法与TSP问题,TSP问题表示为一个N个城市的有向图G=(N,A),其中城市之间距离目标函数为,其中 为城市1,2,n的一个排列,。,14,4 蚁群算法与TSP问题,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 算法 ppt 课件

链接地址:https://www.31ppt.com/p-5663814.html