【教学课件】第八章参数估计方法.ppt
《【教学课件】第八章参数估计方法.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第八章参数估计方法.ppt(48页珍藏版)》请在三一办公上搜索。
1、第八章 参数估计方法,第一节 农业科学中的主要参数及其估计量的评选标准第二节 矩法第三节 最小二乘法第四节 极大似然法,第一节 农业科学中的主要参数及其估计量的评选标准,一、农业科学中的主要参数,(1)总体数量特征值参数,例如,用平均数来估计品种的产量,用平均数差数来估计施肥等处理的效应;(2)在揭示变数间的相互关系方面,用相关系数来描述2个变数间的线性关系;用回归系数、偏回归系数等来描述原因变数变化所引起的结果变数的平均变化的数量,用通径系数来描述成分性状对目标性状的贡献程度等。,农业科学研究中需要估计的参数是多种多样的,主要包括:,二、参数估计量的评选标准,(一)数学期望,样本平均数的平均
2、数就是一种数学期望。例如,一个大豆品种的含油量为20%,测定一次可能是大于20%,再测定可能小于20%,大量反复测定后平均结果为20%,这时20%便可看作为该大豆品种含油量的数学期望,而每单独测定一次所获的值只是1个随机变量。,抽象地,随机变量的数字特征是指随机变量的数学期望值。,对于离散型(间断性)随机变量y的分布列为:Py=yi=pi,其中,i=1,2,那么随机变量y的数学期望E(y)为:,(81),这样可以求得总体平均值。,对于连续型随机变数y的数学期望E(y)为:,(82),其中f(y)为随机变量y的概率密度函数,这样可以求得总体均值。,用D(y)表示方差,有,D(y)=E yE(y)
3、2,(83),这就是随机变量函数的数学期望。同理,离散型随机变量方差的数学期望为:,(84),连续型随机变量方差的数学期望为:,(85),数学期望有这样一些常用的性质:(1)常数的数学期望为常数本身;(2)随机变量与常数的乘积的数学期望是常数与随机变量的数学期望的乘积;(3)多个随机变量分别与常数的乘积的求和函数的数学期望是常数与多个随机变量的数学期望的乘积的和;(4)多个相互独立的随机变量的乘积的数学期望是多个随机变量的数学期望的乘积。,(二)参数估计量的评选标准,评价估计量优劣的标准主要有无偏性、有效性、相合性等,(1)无偏性 参数估计量的期望值与参数真值是相等的,这种性质称为无偏性,具有
4、无偏性的估计量称为无偏估计量。例如,在抽样分布中已经介绍了离均差平方和除以自由度得到的均方的平均数等于总体方差,即该均方的数学期望等于相应总体参数方差,这就是说该均方估计量是无偏的。,估计量的数学期望值在样本容量趋近于无穷大时与参数的真值相等的性质称为渐进无偏性,具有渐进无偏性的估计量称为渐进无偏估计量。,(2)有效性 无偏性表示估计值是在真值周围波动的一个数值,即无偏性表示估计值与真值间平均差异为0,近似可以用估计值作为真值的一个代表。同一个参数可以有许多无偏估计量,但不同估计量的期望方差不同,也就是估计量在真值周围的波动大小不同。估计量的期望方差越大说明用其估计值代表相应真值的有效性越差;
5、否则越好,越有效。不同的估计量具有不同的方差,方差最小说明最有效。如果一个无偏估计量相对与其它所有可能无偏估计量,其期望方差最小,那么称这种估计量为一致最小方差无偏估计量。,(3)相合性 用估计量估计参数涉及一个样本容量大小问题,如果样本容量越大估计值越接近真值,那么这种估计量是相合估计量。,除以上三方面标准外,还有充分性与完备性也是常考虑的。充分性指估计量应充分利用样本中每一变量的信息;完备性指该估计量是充分的唯一的无偏估计量。,第二节 矩法,一、矩的概念,矩(moment)分为原点矩和中心矩两种。对于样本y1,y2,yn,各观测值的k次方的平均值,称为样本的k阶原点矩,记为,有,用观测值减
6、去平均数得到的离均差的k次方的平均数称为样本的k阶中心矩,记为 或,有。,对于总体y1,y2,yN,各观测值的k次方的平均值,称为总体的k阶原点矩,记为,有;用观测值减去平均数得到的离均差的k次方的平均数称为总体的k阶中心矩,记为 或,有,二、矩法及矩估计量,所谓矩法就是利用样本各阶原点矩来估计总体相应各阶原点矩的方法,即,(86),也可以用样本各阶原点矩的函数来估计总体各阶原点矩同一函数,即若Q=f(E(y),E(y2),E(yk),则,由此得到的估计量称为矩估计量。,例8.1 现获得正态分布 的随机样本y1,y2,yn,要求正态分布 参数 和 的矩估计量。,首先,求正态分布总体的1阶原点矩
7、和2阶中心矩:,然后求样本的1阶原点矩和2阶中心矩,为,最后,利用矩法,获得总体平均数和方差的矩估计,故总体平均数和方差的矩估计值分别为样本平均数和样本方差,方差的分母为n。,单峰分布曲线还有二个特征数,即偏度(skewness)与峰度(kurtosis),可分别用偏度系数和峰度系数作测度。偏度系数(coefficient of skewness)是指3阶中心矩与标准差的3次方之比;峰度系数(coefficient of kurtosis)是指4阶中心矩与标准差的4次方之比。当偏度为正值时,分布向大于平均数方向偏斜;偏度为负值时则向小于平均数方向偏斜;当偏度的绝对值大于2时,分布的偏斜程度严重
8、。当峰度大于3时,分布比较陡峭,峰态明显,即总体变数的分布比较集中。,由样本计算的偏度系数,(87),峰度系数,(88),例8.2 计算表3.4数据资料(140行水稻产量)所属分布曲线的偏度和峰度。,表3.4 140行水稻产量(单位:克),首先,计算样本的2、3、4阶中心矩,以及标准差估计值:,然后,根据矩法原理,该分布的偏度与峰度估计值分别为:,因此,说明资料比较集中在平均数左右,分布曲线并不是特别陡峭。,例8.3 例6.9为研究籼粳稻杂交F5代系间单株干草重的遗传变异,随机抽取76个系进行试验,每系随机取2个样品测定干草重(g/株)。按单向分组方差分析进行分析,结果见表6.9。此处用来说明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学课件 教学 课件 第八 参数估计 方法
链接地址:https://www.31ppt.com/p-5663034.html