【教学课件】第一章半导体器件.ppt
《【教学课件】第一章半导体器件.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第一章半导体器件.ppt(90页珍藏版)》请在三一办公上搜索。
1、第一章 半 导 体 器 件,1.1 半导体基础知识 1.2PN结 1.3 半导体三极管,1.1 半导体基础知识 物质按导电性能可分为导体、绝缘体和半导体。物质的导电特性取决于原子结构。导体一般为低价元素,如铜、铁、铝等金属,其最外层电子受原子核的束缚力很小,因而极易挣脱原子核的束缚成为自由电子。因此在外电场作用下,这些电子产生定向运动(称为漂移运动)形成电流,呈现出较好的导电特性。高价元素(如惰性气体)和高分子物质(如橡胶,塑料)最外层电子受原子核的束缚力很强,极不易摆脱原子核的束缚成为自由电子,所以其导电性极差,可作为绝缘材料。而半导体材料最外层电子既不像导体那样极易摆脱原子核的束缚,成为自
2、由电子,也不像绝缘体那样被原子核束缚得那么紧,因此,半导体的导电特性介于二者之间。,1.1.1 本征半导体 纯净晶体结构的半导体称为本征半导体。常用的半导体材料是硅和锗,它们都是四价元素,在原子结构中最外层轨道上有四个价电子。为便于讨论,采用图 1-所示的简化原子结构模型。把硅或锗材料拉制成单晶体时,相邻两个原子的一对最外层电子(价电子)成为共有电子,它们一方面围绕自身的原子核运动,另一方面又出现在相邻原子所属的轨道上。即价电子不仅受到自身原子核的作用,同时还受到相邻原子核的吸引。于是,两个相邻的原子共有一对价电子,组成共价键结构。故晶体中,每个原子都和周围的个原子用共价键的形式互相紧密地联系
3、起来,如图-所示。,图 1 1 硅和锗简化原子结构模型,图 1 2 本征半导体共价键晶体结构示意图,共价键中的价电子由于热运动而获得一定的能量,其中少数能够摆脱共价键的束缚而成为自由电子,同时必然在共价键中留下空位,称为空穴。空穴带正电,如图 1-所示。,图 1 3 本征半导体中的自由电子和空穴,由此可见,半导体中存在着两种载流子:带负电的自由电子和带正电的空穴。本征半导体中,自由电子与空穴是同时成对产生的,因此,它们的浓度是相等的。我们用n和p分别表示电子和空穴的浓度,即ni=pi,下标i表示为本征半导体。,价电子在热运动中获得能量产生了电子-空穴对。同时自由电子在运动过程中失去能量,与空穴
4、相遇,使电子、空穴对消失,这种现象称为复合。在一定温度下,载流子的产生过程和复合过程是相对平衡的,载流子的浓度是一定的。本征半导体中载流子的浓度,除了与半导体材料本身的性质有关以外,还与温度有关,而且随着温度的升高,基本上按指数规律增加。因此,半导体载流子浓度对温度十分敏感。对于硅材料,大约温度每升高,本征载流子浓度ni增加 1 倍;对于锗材料,大约温度每升高,增加 1 倍。除此之外,半导体载流子浓度还与光照有关,人们正是利用此特性,制成光敏器件。,1.1.2 杂质半导体 1.型半导体 在本征半导体中,掺入微量价元素,如磷、锑、砷等,则原来晶格中的某些硅(锗)原子被杂质原子代替。由于杂质原子的
5、最外层有个价电子,因此它与周围个硅(锗)原子组成共价键时,还多余 1 个价电子。它不受共价键的束缚,而只受自身原子核的束缚,因此,它只要得到较少的能量就能成为自由电子,并留下带正电的杂质离子,它不能参与导电,如图-所示。显然,这种杂质半导体中电子浓度远远大于空穴的浓度,即nnpn(下标表示是型半导体),主要靠电子导电,所以称为型半导体。由于价杂质原子可提供自由电子,故称为施主杂质。型半导体中,自由电子称为多数载流子;空穴称为少数载流子。,图 1-4 N型半导体共价键结构,杂质半导体中多数载流子浓度主要取决于掺入的杂质浓度。由于少数载流子是半导体材料共价键提供的,因而其浓度主要取决于温度。此时电
6、子浓度与空穴浓度之间,可以证明有如下关系:,即在一定温度下,电子浓度与空穴浓度的乘积是一个常数,与掺杂浓度无关。,2.P型半导体 在本征半导体中,掺入微量价元素,如硼、镓、铟等,则原来晶格中的某些硅(锗)原子被杂质原子代替。,图 1 5 P型半导体的共价键结构,1.结,1.2.1 异型半导体接触现象,图 1-6 PN结的形成,1.2.2 结的单向导电特性,1.结外加正向电压 若将电源的正极接区,负极接区,则称此为正向接法或正向偏置。此时外加电压在阻挡层内形成的电场与自建场方向相反,削弱了自建场,使阻挡层变窄,如图-()所示。显然,扩散作用大于漂移作用,在电源作用下,多数载流子向对方区域扩散形成
7、正向电流,其方向由电源正极通过区、区到达电源负极。,此时,结处于导通状态,它所呈现出的电阻为正向电阻,其阻值很小。正向电压愈大,正向电流愈大。其关系是指数关系:,式中,为流过结的电流;U为结两端电压;,称为温度电压当量,其中k为玻耳兹曼常数,为绝对温度,q为电子的电量,在室温下即时,;为反向饱和电流。电路中的电阻是为了限制正向电流的大小而接入的限流电阻。,图 1-7 PN结单向导电特性,2.结外加反向电压 若将电源的正极接区,负极接区,则称此为反向接法或反向偏置。此时外加电压在阻挡层内形成的电场与自建场方向相同,增强了自建场,使阻挡层变宽,如图-()所示。此时漂移作用大于扩散作用,少数载流子在
8、电场作用下作漂移运动,由于其电流方向与正向电压时相反,故称为反向电流。由于反向电流是由少数载流子所形成的,故反向电流很小,而且当外加反向电压超过零点几伏时,少数载流子基本全被电场拉过去形成漂移电流,此时反向电压再增加,载流子数也不会增加,因此反向电流也不会增加,故称为反向饱和电流,即。,此时,结处于截止状态,呈现的电阻称为反向电阻,其阻值很大,高达几百千欧以上。综上所述:结加正向电压,处于导通状态;加反向电压,处于截止状态,即结具有单向导电特性。将上述电流与电压的关系写成如下通式:此方程称为伏安特性方程,如图-所示,该曲线称为伏安特性曲线。,(1-1),图 1-8 PN结伏安特性,1.2.3
9、结的击穿 PN结处于反向偏置时,在一定电压范围内,流过结的电流是很小的反向饱和电流。但是当反向电压超过某一数值()后,反向电流急剧增加,这种现象称为反向击穿,如图-所示。称为击穿电压。结的击穿分为雪崩击穿和齐纳击穿。,当反向电压足够高时,阻挡层内电场很强,少数载流子在结区内受强烈电场的加速作用,获得很大的能量,在运动中与其它原子发生碰撞时,有可能将价电子“打”出共价键,形成新的电子、空穴对。这些新的载流子与原先的载流子一道,在强电场作用下碰撞其它原子打出更多的电子、空穴对,如此链锁反应,使反向电流迅速增大。这种击穿称为雪崩击穿。所谓“齐纳”击穿,是指当结两边掺入高浓度的杂质时,其阻挡层宽度很小
10、,即使外加反向电压不太高(一般为几伏),在结内就可形成很强的电场(可达2106 V/cm),将共价键的价电子直接拉出来,产生电子-空穴对,使反向电流急剧增加,出现击穿现象。,对硅材料的结,击穿电压大于V时通常是雪崩击穿,小于V时通常是齐纳击穿;在V和V之间时两种击穿均有。由于击穿破坏了结的单向导电特性,因而一般使用时应避免出现击穿现象。发生击穿并不一定意味着结被损坏。当PN结反向击穿时,只要注意控制反向电流的数值(一般通过串接电阻实现),不使其过大,以免因过热而烧坏结,当反向电压(绝对值)降低时,结的性能就可以恢复正常。稳压二极管正是利用了结的反向击穿特性来实现稳压的,当流过结的电流变化时,结
11、电压保持基本不变。,1.2.4 结的电容效应 按电容的定义,即电压变化将引起电荷变化,从而反映出电容效应。而结两端加上电压,结内就有电荷的变化,说明结具有电容效应。结具有两种电容:势垒电容和扩散电容。,1.势垒电容CT 势垒电容是由阻挡层内空间电荷引起的。空间电荷区是由不能移动的正负杂质离子所形成的,均具有一定的电荷量,所以在结储存了一定的电荷,当外加电压使阻挡层变宽时,电荷量增加,如图-所示;反之,外加电压使阻挡层变窄时,电荷量减少。即阻挡层中的电荷量随外加电压变化而改变,形成了电容效应,称为势垒电容,用表示。理论推导,图 1-9 阻挡层内电荷量随外加电压变化,图 1-10 势垒电容和外加电
12、压的关系,2扩散电容CD,图 1-11 P区中电子浓度的分布曲线及电荷的积累,2扩散电容CD 扩散电容是结在正向电压时,多数载流子在扩散过程中引起电荷积累而产生的。当结加正向电压时,区的电子扩散到区,同时区的空穴也向区扩散。显然,在区交界处(x),载流子的浓度最高。由于扩散运动,离交界处愈远,载流子浓度愈低,这些扩散的载流子,在扩散区积累了电荷,总的电荷量相当于图 1-11中曲线以下的部分(图-表示了区电子,p的分布)。若结正向电压加大,则多数载流子扩散加强,电荷积累由曲线变为曲线,电荷增加量为;反之,若正向电压减少,则积累的电荷将减少,这就是扩散电容效应CD,扩散电容正比于正向电流,即DI。
13、所以结的结电容包括两部分,即Cj。一般说来,结正偏时,扩散电容起主要作用,;当结反偏时,势垒电容起主要作用,即。,1.2.5 半导体二极管 半导体二极管是由结加上引线和管壳构成的。二极管的类型很多,按制造二极管的材料分,有硅二极管和锗二极管。从管子的结构来分,有以下几种类型:,点接触型二极管。面接触型二极管。硅平面型二极管。,图 1 12 半导体二极管的结构和符号,1.二极管的特性,图 1 13 二极管的伏安特性曲线,(1)正向特性:正向电压低于某一数值时,正向电流很小,只有当正向电压高于某一值后,才有明显的正向电流。该电压称为导通电压,又称为门限电压或死区电压,用表示。在室温下,硅管的约为.
14、V,锗管的约为.V。通常认为,当正向电压on时,二极管截止;时,二极管导通。(2)反向特性:二极管加反向电压,反向电流数值很小,且基本不变,称反向饱和电流。硅管反向饱和电流为纳安()数量级,锗管的为微安数量级。当反向电压加到一定值时,反向电流急剧增加,产生击穿。普通二极管反向击穿电压一般在几十伏以上(高反压管可达几千伏)。,(3)二极管的温度特性:二极管的特性对温度很敏感,温度升高,正向特性曲线向左移,反向特性曲线向下移。其规律是:在室温附近,在同一电流下,温度每升高,正向压降减小.V;温度每升高,反向电流约增大 1 倍。,2.二极管的主要参数(1)最大整流电流。它是二极管允许通过的最大正向平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学课件 教学 课件 第一章 半导体器件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5659774.html