【教学课件】第14章常微分方程的MATLAB求解.ppt
《【教学课件】第14章常微分方程的MATLAB求解.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第14章常微分方程的MATLAB求解.ppt(13页珍藏版)》请在三一办公上搜索。
1、第14章 常微分方程的MATLAB求解,编者,Outline,14.1 微分方程的基本概念14.2 几种常用微分方程类型14.3 高阶线性微分方程14.4 一阶微分方程初值问题的数值解14.5 一阶微分方程组和高阶微分方程的数值解14.6 边值问题的数值解,14.1 微分方程的基本概念,微分方程:一般的,凡表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程。微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶微分方程的解:找出这样的函数,把这函数代入微分方程能使该方程成为恒等式。这个函数就叫做微分方程的解。微分方程的通解:如果微分方程的解
2、中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。初始条件:设微分方程中的未知函数为,如果微分方程是一阶的,通常用来确定任意常数的条件是 时,或写成 其中 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的条件是其中 和 都是给定的值,上述这种条件叫做初始条件。确定了通解中的任意常数以后,就得到微分方程的特解。求微分方程 满足初始条件 的特解是这样一个问题,叫做一阶微分方程的初值问题,记作微分方程的解的图形是一条曲线,叫做微分方程的积分曲线。,14.2 几种常用微分方程类型,1.可分离变量的微分方程 一般的,如果一个一阶微分方程能写成的形式,就是说,能把
3、微分方程写成一端只含 的函数和,另一端只含 的函数和,那么原方程就称为可分离变量的微分方程。2.齐次方程 如果一阶微分方程可化成 的形式,那么就称这方程为齐次方程。3.一阶线性微分方程 线性方程:方程 叫做一阶线性微分方程因为它对于未知函数y 及其导数是一次方程。如果,则上述方程称为齐次的;如果,则上述方程称为非齐次的。为了求出非齐次线性方程的解,我们先把 换成零而写出方程 该方程叫做对应于非齐次线性方程的齐次线性方程。齐次线性方程的通解为 非齐次线性方程的通解为伯努利方程:方程 叫做伯努利(Bernoulli)方程。当 时,该方程是线性微分方程,当 时,该方程不是线性的,但是通过变量的替换,
4、便可把它化为线性的,4.可降阶的高阶微分方程 型的微分方程:微分方程 的右端仅含有自变量 x,容易看出,只要把 作为新的未知函数,那么微分方程 即化为新未知函数 的一阶微分方程,两边积分,就得到一个 阶的微分方程同理可得依此法继续进行,接连积分 n次,便得到方程 的含有 n 个任意常数的通解。型的微分方程:方程的右端不显含未知函数 y。如果我们设,那么因此,方程 就成为,这是一个关于变量 的一阶微分方程,设其通解为,又 因此又得到一个一阶微分方程对它进行积分,便得到方程 的通解为 型的微分方程:方程中不显含自变量x,为了求出它的解,我们令,并利用复合函数求导法则把 化为对 的导数,即这样,方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学课件 教学 课件 14 微分方程 MATLAB 求解
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5657892.html