【教学课件】第10章期望效用值理论.ppt
《【教学课件】第10章期望效用值理论.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第10章期望效用值理论.ppt(85页珍藏版)》请在三一办公上搜索。
1、第10章 期望效用值理论,10.1 期望收益值10.2 行为假设与偏好关系10.3 效用函数及其确定10.4 主观期望效用值思考与练习,10.1 期望收益值,10.1.1 期望收益值准则一般来讲,求解任何类型的决策问题,最后都归结为对各被选方案进行选择。而对方案的选择,我们可从两个方面来考虑:后果值、自然状态出现的概率。由于方案后果在许多情况下,特别是经营管理决策中都用盈利、亏损这类指标,因此期望收益值成为决策分析发展过程中提出最早和应用最广泛的一种准则。收益值往往采用货币单位。当然,也可采用货币以外的定量单位。从统计学的角度出发,用数学期望来权衡方案的各种可能结果,希望从多次决策中取得的平均
2、收益最大。,期望收益值准则如下:设Ai(i=1,2,m)为m个被选方案,pj(j=1,2,n)为各个自然状态发生的概率,ij为方案Ai在自然状态j下的后果值。方案Ai期望收益值为若方案Ak满足(10.2)则决策者选择Ak为最优方案。,(10.1),对于成本之类的后果,式(10.2)应为,但其原理相同,不再另行讨论。10.1.2 应用期望收益值作为决策准则存在的一些问题1 后果的多样性 后果可能反映直接经济效益、间接经济效益,也可能是生态效益、社会效益。当后果值是盈利、支出等可量化的指标时,采用期望收益值的方法是可行的,但当评价指标是一些不容易量化的软指标时,如在例9.3中,如何确定期望收益值将
3、是一个难以解决的问题,或者说期望收益值将变得没有意义。,2 采用期望后果值的不合理性从概率论中我们知道,概率是频率的极限。也就是说,事件发生的概率是大量重复多次试验体现出的统计学意义上的规律。这有两层含义:其一,试验必须是可在完全相同的情况下重复进行的;其二,试验必须多次进行。而决策问题,特别是战略性的决策问题,往往不满足这样的要求。比如我们说:航天飞机的发射,其可靠性是99.7%,是指通过理论上的计算得出的,多次发射中成功发射出现的次数占99.7%。而对于一次发射而言,结果只能是要么失败,要么成功。,例10.1 圣彼得堡悖论(St.Petersberg Paradox)。设有一场猜硬币正反面
4、的赌博,一局中赌徒可以猜无数多次,直到他猜对为止。赌徒在第一次猜对可得2元;第一次没有猜对,第二次猜对可得4元;前两次没有猜对,第三次猜对,赌徒可得8元;如果前n-1次都没有猜对,第n次猜对则可得2n元;。如图10.1所示。,图10.1 圣彼得堡悖论,现在问:为使赌徒有权参加这样的赌博,它应该先交多少钱才能使这样的赌博成为“公平的赌博”?所谓公平的赌博,是指参加赌博的任何一方输赢数额和机会是相等的。比如这样的猜硬币的赌局,所谓公平,是指赌徒和赌局的设立者应该有相同的机会获得相同的回报。用概率论的语言来讲,设X是一个随机变量,指赌徒在一局赌博中赢得的钱,则X的数学期望就是赌徒为参加这样的赌博应该
5、先交的钱。因为在多次赌博之后,赌局的设立者获得的收入,应等于赌徒赚得的收入。用公式表示如下:,上式表示,不管赌徒应先交多少钱,他都是有利可图的,因为不管每局交多少钱,都小于它可能得到的回报。然而,如果真有这样的赌局,又有哪个赌徒真的会这样做呢?这就产生一个悖论:理论上平等的赌博,在现实中是不可能有人敢于参加的,实际上也是无法实现的。让我们考虑可猜的次数是有限的情况,设赌徒可猜10次,那么他的盈利的数学期望是10元,即交10元就有权参加这样的赌博,这样的赌博使参加的人不会感觉有多么大的风险,因为只有0.5的概率输8元,而最多可赢1024元,会有很多人愿意参加。,然而,若赌徒可猜的次数是10 00
6、0次,那么赌徒须交10 000元才有权参加这样的赌博,同时,有1/2的概率是输9998元,最多可赢210000元(概率为1/210000)。从理论上讲,同一人在多次参加这样的赌博之后,不会有什么盈利或损失(回报的期望为0),但恐怕没有哪个赌徒愿意参加。问题在于数学期望是建立在大样本基础上的,人们在参加次数较少的情况下,当然会更在意概率较大的事件。另外一方面,人们对同样理论上都是平等的赌博,在可能输的数额不大的情况下,愿意参加的人较多,而在可能输的数额巨大的情况下,就没有人愿意参加了。这实际上也是一个人们行为动机的心理的问题,人们对风险的认识并不一定与理论结果相符。,伯努利提出了精神价值即效用值
7、的概念。人们在拥有不同财富的条件下,增加等量财富所感受到的效用值是不一样的。随着财富的增加,其效用值总是在增加,但效用值的增长速度是递减的。他建议用对数函数来衡量效用值V:其中,w表示现有财富;A表示愿意支付的最大可能赌金。和货币期望值不同的是,该式的和不是无穷大而是有限的。尽管伯努利的解释并不完善,但他所发现的这一悖论和提出的效用值概念,却是决策理论的奠基石。,3 实际决策与理性决策的差异性 例10.2 巴斯葛“赌注”(Pascals Wager)。圣彼得堡悖论中人们不认可小概率收益,巴斯葛“赌注”则恰好相反,对小概率收益寄以厚望。数学家巴斯葛置身于宗教生活之中,他酷信永恒安乐的价值是无穷的
8、。即使获得这种永恒安乐的概率甚微,但其期望值仍然是无穷大,为这类极小概率事件而愿意花费极大的代价。,这类现象在实际生活中也并不鲜见。如绝症患者只要有一线治愈希望就往往不惜代价地去求医问药;某市领导当年决定上了一个工业园区的项目,随着时间的推移,其负面作用越来越明显,但作为其“政绩工程”,如果关闭势必影响到自己的威信和地位,因此只要有可能,总是试图继续维持。圣彼得堡悖论对小概率事件不以为然,而巴斯葛“赌注”则相反。然而,两者都能说明实际决策行为和理性决策的差异。,4 负效应 以货币为单位的期望收益值作为决策准则还有负效应引起的弊端。如掷硬币,方案A:若为正面,则赢5元,反面则输5元;方案B:若为
9、正面赢5万元,反面则输5万元;E(A)=E(B)。但此时人们心目中已不采用期望收益值准则行事。依人们的价值观,损失5万元要比赢得5万元的效用值大,称为“负效用”。这样的例子有很多,如一个人的工资涨了100元,他可能觉得没什么;但如减薪100元,那他肯定要问个明白,且感觉不舒服。,5 决策者的主观因素(价值观)经济学中的边际效用递减规律是指随着某种物品消费量的增加,心理满足程度会以越来越缓慢的速度增加。在这里,这个规律在决策者的决策中当然会体现,即期望收益值的增加程度,并不一定等价于决策者心理上满足感的增加程度。从另一个方面讲,对于不同的决策者,同样的收益,不一定带来同样的心理上的满足。比如买衬
10、衣,某甲原来的衬衣都已破旧,买了一件新的;某乙原有十几件新衬衣,再买一件;同样一件衬衣,在甲看来这件新衬衣比乙心目中的价值要高得多。,而且,不同决策者,对同样数额收益或损失的心理上的反应,会随着其个人经历、知识背景、性格特点及其它主观因素的不同而不同。经历过新中国成立初期困难时期的人,与改革开放后在较好的经济条件下成长的新一代,他们对同样物质生活水平的满足感是显然不同的。前者更能感受经济发展带来的生活水平的提高,而后者会认为这样的生活水平是理所应当的,并不觉得有什么太好。综合以上五点,我们得出以下两点结论:(1)需要一种能表述人们主观价值的衡量指标,而且它能综合衡量各种定量和定性的结果;(2)
11、这样的指标没有统一的客观评定尺度,因人而异,视各人的经济、社会和心理条件而定。,因此,需要探求一种较期望收益值更为完善的决策准则,使其能体现实际决策中决策者对方案的衡量指标,更适合于为决策者提供更加合理、有效,也更加体现决策者意图,更加人性化的决策分析中对方案的评价指标。这既是理论上的完善,也是决策理论向实际应用迈进的重要一步。本章的目的,就是介绍这样一种合理的评价准则,即将后果值转换为效用值,以期望效用值作为方案选择的判别准则。为此,我们在下一节中先讨论行为假设与偏好关系。,10.2 行为假设与偏好关系,对于一个决策问题来说,每一种方案下对应于不同的自然状态都有一个后果值,于是每一方案的后果
12、值可用一个向量来表示。但要评价各方案的优劣,我们必须将每一方案下的这个向量合并成一个数来反映方案的优劣。在此基础上,我们才能对各方案进行优劣评价。因此,决策分析的首要问题在于建立一种有效的方法或模型来评价备选方案,而这种方法或模型必须要有可靠的理论基础,这就是下面将要介绍的关于决策的合理行为的假设以及由此引出的结论。考虑风险型决策问题,即各自然状态的出现概率已知的情形。首先我们引入一些新的概念,以用来描述一个方案的结果,以及方案之间的关系和运算。,定义10.1 把具有两种或两种以上的可能结果的方案(行为)称为事态体,其中的各种可能结果为依一定概率出现的随机事件。如用记号T来表示一个事态体,则
13、T=(1,2,n;p1,p2,pn)其中,1,2,n表示该行为的n种可能的结果,它们分别以p1,p2,pn的概率出现,且满足pi0,i=1,2,n,。,n=2时的事态体T=(1,2;p1,p2)称为简单事态体,由于p2+p1=1,p2可由p1确定,故可简记为T=(1,2;p1)。全体事态体的集合F称为事态体空间。F中所有可能后果的集合J=1,2,n称为后果集。在单目标、多目标风险型决策问题中,每一个备选方案均可用一事态体表示。如果各自然状态的顺序已定,则pi就是第i种自然状态出现的概率,i表示该方案在第i种自然状态出现时的结果(后果值)。,例10.3 有奖发票鼓励消费者索要发票,促使商家依法纳
14、税。假设一消费者消费99元,商家此时有两种选择:(1)给99元的发票(共6张,面额分别为:50元1张、20元2张、5元1张、2元2张);(2)给100元的发票(1张100元面额)。设有两种可能的结果:中奖,不中奖。这两种选择下不同的可能结果分别用11,12,21,22表示。假设每张发票的中奖概率为p,奖金为10元,发票的税率为1%。为了分析方便,我们设定顾客最多中奖一次,则这两种撕票的方案可用下面两个事态体表示:T1=(11,12;1-(1-p)6)T2=(21,22;p),其中后果值为当天营业额的减少量:11=10+991%,12=991%,21=10+1001%,22=1001%我们通过下
15、面三个步骤建立一种合理的公理化的评价准则。第一步 一个概念偏好关系。对于后果集J=1,2,n中任意两个可能的结果x和y,总可以按照既定目标的需要,前后一致地判定其中一个不比另一个差,表示为xy(x不比y差)。,这种偏好关系“”必须满足下面三个条件:(1)自反性:x x(一个方案不会比它自己差);(2)传递性:xy,yzxz;(3)完备性:任何两个结果都可以比较优劣,即x,yJ,xy yx,二者必居其一。在此基础上我们定义:若xy,且yx,称x与y无差别,记为xy。若xy不成立,则称x,y有差别,记为xy。若xy且xy,则称x优于y,记为xy。,所以,xy实际表示“x优于或无差于y,即xyxy”
16、;xy实际表示“x劣于或无差于y,即xyxy”。例如在例10.3中,显然有12221121。下面我们基于偏好关系提出三条假设,将偏好关系推广到一般事态体的比较,由此得出一般事态体间的比较、运算法则。第二步 三个假设把后果集J中结果的比较推广到标准事态体间的比较。假设10.1 设T1、T2是两个有相同可能结果(1和2)的简单事态体,即 T1=(1,2;p),T2=(1,2;q)其中1 2。,(1)当pq时,事态体T1无差于事态体T2,记为T1T2;(2)当pq时,事态体T1优越于事态体T2,记为T1 T2;反之,则有T1 T2。例10.4 两组有奖储蓄,均发行储蓄券10 000张,两组中奖者均获
17、得同样数目奖金(400元)。所不同的是,第一组拥有可中奖彩券150张,而第二组中只拥有可中奖彩券100张,试问你愿参加哪一个组?,设T1和T2分别代表两组有奖储蓄。参加者有以下两种可能结果:中奖,获奖金1;未中奖,只获少数利息2。显然,1 2。若T1、T2两个组都发行储蓄券10 000张,但T1组内中奖个数为n1,T2组内的中奖个数为n2,即 T1=(1,2;n1/10 000),T2=(1,2;n2/10 000)于是,当n1=n2时,意味着两组中出现1和2的可能性是相同的,即p=q,这对于任一个储蓄者来说,参加T1组和参加T2组的中奖机会是完全相同的,因此储蓄者对于参加哪一个组是无所谓偏好
18、的,也就是说,事态体T1和T2没有差别,T1 T2。,当n1n2时,例如n1120和n2 150时,p0.012,q0.015,于是,第二组内的中奖可能性要大一些,储蓄者肯定会选择第二组,也就是说,事态体T2优越于T1,T2T1。假设10.2(连续性)设有两个事态体T1,T2,T1=(1,;p),T2=(2,;q),如若1 2,则存在pq,使得当p=p时,T1T2。这一假设同样可以用储蓄的例子来解释。,例10.5 如同例10.4,若两组中奖数额不同。设T1组奖金1=700元,T2组奖金2400元。1 2。两组都发行10 000张。若T1组中奖个数n1与T2组中奖个数n2相同(均为100个),显
19、然T1 T2。若T1组中奖个数不是100而降为小于100的某个数,储蓄者是否有可能改变主意?具体解释请读者自己完成。,假设10.3(无差关系、优越关系的传递性)设T1,T2,T3为三个事态体,则(1)当T1 T2,T2 T3时,有T1 T3。(无差关系的传递性)(2)当T1 T2,T2 T3时,有T1 T3。(优越关系的传递性)这三条假设将后果值间的偏好关系推广到了事态体间的偏好关系。从上述三条假设出发,我们可以推出下面两条重要结论。这两条结论实质上是以后内容的基础。第三步 两个定理决策分析的理论基础。定理10.1 设T1=(1,2;x),3为必然事件,1 3 2,则必存在p0,1,使得当x=
20、p时,事态体T1无差于必然事件3,即3(1,2;p)。,证明 3实际上是一个p1的特殊事态体,3(3,2;1)。比较事态体(3,2;1)与T1=(1,2;x),因为1 3 2,根据假设10.2,必存在p1,使得当x=p时,(3,2;1)T1=(1,2;x),又根据假设10.3的无差关系的传递性,3 T1=(1,2;p)。证毕。如若3(1,2;p),则称p为3关于1、2的无差概率。,例10.6(掷硬币事件)掷一枚硬币,假设掷出正面H(正)和掷出方面T(反)的概率均为0.5,A1(500,0;0.5),A2(200,200;0.5)。A1为风险型事件,A2为确定型事件。二者何为优先?此时,A2=2
21、00元。若A2=500元,肯定不接受A1。若A2=0元,什么机会也没有,接受A1。是否参与A1取决于另一个收益为确定值的方案,此确定值在0500之间。可以推断,从肯定不参与到参与之间,此确定值相应有一个转折点。这个转折点就是和事态体方案A1等价的确定值,即称为等价确定值。,如若A2=305,则A2 A1;A2=295,则A2 A1;假设A1 300,则A1的等价确定值为300。于是在本例中,A1优于A2。定理10.1的重要性是显然的,它在必然事件与简单事态体这样两种表面性质完全不同的事物之间建立了无差别类比的运算关系,体现了人对于不确定事件的“把握”与“判断”。前者是确定的结局,后者则具有多种
22、可能的结果。这种将随机性的情形化成等价的确定性情形的过程,实际上构成了基于效用函数理论的决策分析方法的理论基础。下面的定理进一步说明任一有n种可能结果的事态体还可化为一个无差别的简单事态体,从而也可无差别于一个必然事件。,定理10.2(简化性)任一有种可能结果的事态体(1,n;p1,pn)无差于某一简单事态体(*,*;p),即(1,n;p1,pn)(*,*;p)(10.3)其中,为j关于*与*的无偏概率,。证明*j*,且qj为j关于*与*的无偏概率,所以根据定理10.1,有j(*,*;qj)j=1,2,n(10.4),对T中所有可能的结果都利用上式进行无差代换,即T=(1,n;p1,pn)(*
23、,*;q1),(*,*,q2),(*,*;qn);p1,p2,pn)(*,*,*,*,*,*;p1q1,p1(1-q1),p2q2,p2(1-q2),pnqn,pn(1-qn)因为,代入上式可得,定理得证。图10.2的树形图说明了这一转化的过程。,图10.2 简化性的树形图,这个定理告诉我们,任意一个标准事态体都可以转化成一个简单事态体,从而任意两个有多种可能结果的标准事态体之间的比较可以转化成与之无差的两个简单事态体的比较,且这两个事态体具有相同的结果,即可由假设10.1得出比较结果。基于无差关系和偏好关系的传递性,对于多个事态体的排序,也可由此方法完成。上述三个假设和两个定理作为决策分析的
24、理论基础具有十分重要的意义。在求解含有不确定因素的决策问题中,每个方案因不确定的自然状态都有若干种可能的结果,因此可被看成一个个的事态体。当它们满足前面三个假设时,由上面的两个定理可知,这些事态体都是可以进行比较的,因而这类决策问题的备选方案都可以排出优劣顺序。,也就是说,对于理性的决策者,决策总可由这样一个结构化的过程完成,具体地说,对于方案集A=A1,Am,Ai=(i1,in;p1,pn)i=1,2,m(10.5)其中(10.7)比较(i=1,2,m)之间的大小即可对方案集进行排序,从而定出最优方案。,(10.6),由此可以看出,对于方案集中各个备选方案Ai的评价与排序,关键在于给出一个便
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学课件 教学 课件 10 期望 效用 理论

链接地址:https://www.31ppt.com/p-5657646.html