《违背基本假定问题》PPT课件.ppt
《《违背基本假定问题》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《违背基本假定问题》PPT课件.ppt(87页珍藏版)》请在三一办公上搜索。
1、第四章 经典单方程计量经济学模型:放宽基本假定的模型Relaxing the Assumptions of the Classical Model,基本假定违背主要 包括:随机误差项序列存在异方差性;随机误差项序列存在序列相关性;解释变量之间存在多重共线性;解释变量是随机变量且与随机误差项相关的随机解释变量问题;模型设定有偏误;解释变量的方差不随样本容量的增加而收敛。计量经济检验:对模型基本假定的检验 本章主要学习前4类,4.1 异方差性;4.2 序列相关性;4.3 多重共线性;4.4 随机解释变量问题;,4.1 异方差性Heteroscedasticity,一、异方差的概念二、异方差性的后果
2、三、异方差性的检验四、异方差的修正五、例题,一、异方差的概念,即对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性(Heteroskedasticity)。,1、异方差,Homoscedasticity,2、异方差的类型,同方差:i2=常数,与解释变量观测值Xi无关;异方差:i2=f(Xi),与解释变量观测值Xi有关。异方差一般可归结为三种类型:单调递增型:i2随X的增大而增大单调递减型:i2随X的增大而减小复 杂 型:i2与X的变化呈复杂形式,3、实际经济问题中的异方差性,例:截面资料下研究居民家庭的储蓄行为 Yi=0+1Xi+iYi:第i个家庭的储蓄额 Xi:第
3、i个家庭的可支配收入。,高收入家庭:储蓄的差异较大;低收入家庭:储蓄则更有规律性,差异较小。i的方差呈现单调递增型变化,例4.1.2:以绝对收入假设为理论假设、以截面数据为样本建立居民消费函数:Ci=0+1Yi+I将居民按照收入等距离分成n组,取组平均数为样本观测值。,一般情况下,居民收入服从正态分布:中等收入组人数多,两端收入组人数少。而人数多的组平均数的误差小,人数少的组平均数的误差大。样本观测值的观测误差随着解释变量观测值的不同而不同,往往引起随机项的异方差性,且呈U形。,例4.1.3:以某一行业的企业为样本建立企业生产函数模型 Yi=Ai1 Ki2 Li3eI被解释变量:产出量Y,解释
4、变量:资本K、劳动L、技术A。,每个企业所处的外部环境对产出量的影响被包含在随机误差项中。对于不同的企业,它们对产出量的影响程度不同,造成了随机误差项的异方差性。随机误差项的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。,二、异方差性的后果 Consequences of Using OLS in the Presence of Heteroskedasticity,1、参数估计量非有效,OLS估计量仍然具有无偏性,但不具有有效性。,因为在有效性证明中利用了E()=2I,而且,在大样本情况下,尽管参数估计量具有一致性,但仍然不具有渐近有效性。,2、变量的显著性检验失去意义,变
5、量的显著性检验中,构造了t统计量,其他检验也是如此。,3、模型的预测失效,一方面,由于上述后果,使得模型不具有良好的统计性质;,所以,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。,三、异方差性的检验Detection of Heteroscedasticity,1、检验思路,检验方法很多1.图示法:帕克检验(Park Test)戈里瑟检验(Glejser Test)G-Q检验(Goldfeld-Quandt Test)怀特检验(Whites General Heteroscedasticity Test),共同的思路:由于异方差
6、性是相对于不同的解释变量观测值,随机误差项具有不同的方差。那么检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。问题在于用什么来表示随机误差项的方差?一般的处理方法:首先采用OLS估计,得到残差估计值,用它的平方近似随机误差项的方差。,2、图示法,(1)用X-Y的散点图进行判断 看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)。,看是否形成一斜率为零的直线。,3、帕克(Park)检验与戈里瑟(Gleiser)检验,基本思想:偿试建立方程:,选择关于变量X的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程
7、显著成立,则说明原模型存在异方差性。,若在统计上是显著的,表明存在异方差性。,帕克检验常用的函数形式:,Gleiser,Park,4、戈德菲尔德-匡特(Goldfeld-Quandt)检验,G-Q检验以F检验为基础,适用于样本容量较大、异方差递增或递减的情况。先将样本一分为二,对子样和子样分别作回归,然后利用两个子样的残差平方和之比构造统计量进行异方差检验。由于该统计量服从F分布,因此假如存在递增的异方差,则F远大于1;反之就会等于1(同方差)或小于1(递减方差)。,G-Q检验的步骤:将n对样本观察值(Xi,Yi)按观察值Xi的大小排队;将序列中间的c=n/4个观察值除去,并将剩下的观察值划分
8、为较小与较大的相同的两个子样本,每个子样样本容量均为(n-c)/2;对每个子样分别进行OLS回归,并计算各自的残差平方和。在同方差性假定下,构造如下满足F分布的统计量:,5、怀特(White)检验,以二元模型为例,在同方差假设下,辅助回归可决系数,渐近服从,辅助回归解释变量的个数,建立辅助回归模型,说明:辅助回归仍是检验与解释变量可能的组合的显著性,因此,辅助回归方程中还可引入解释变量的更高次方。如果存在异方差性,则表明确与解释变量的某种组合有显著的相关性,这时往往显示出有较高的可决系数以及某一参数的t检验值较大。在多元回归中,由于辅助回归方程中可能有太多解释变量,从而使自由度减少,有时可去掉
9、交叉项。,四、异方差的修正加权最小二乘法Correcting HeteroscedasticityWeighted Least Squares,WLS,1、WLS的思路,加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数。,在采用OLS方法时:对较小的残差平方ei2赋予较大的权数;对较大的残差平方ei2赋予较小的权数。,例如,对一多元模型,加权后的模型满足同方差性,可用OLS法估计。,一般情况下:,Y=X+,W是一对称正定矩阵,存在一可逆矩阵D使得W=DD,这就是原模型Y=X+的加权最小二乘估计量,是无偏、有效的估计量。,这里权矩阵为D-1,它来自于原
10、模型残差项的方差-协方差矩阵2W。,2、如何得到2W?,一种可行的方法:对原模型进行OLS估计,得到随机误差项的近似估计量i,以此构成权矩阵的估计量。即,3、模型变换(Transformation),对原模型进行OLS估计,得到随机误差项的近似估计量i;寻找i2与Xi之间的关系;利用该关系对原模型进行变换;对变换后的模型进行OLS估计。,4、Whites Heteroscedasticity-Consistent Variances and Standard Errors,应用软件中推荐的一种选择。适合样本容量足够大的情况。仍然采用OLS,但对OLS估计量的标准差进行修正。与不附加选择的OLS
11、估计比较,参数估计量没有变化,但是参数估计量的方差和标准差变化明显。即使存在异方差、仍然采用OLS估计时,变量的显著性检验有效,预测有效。,5、在实际操作中通常采用的经验方法,采用截面数据作样本时,不对原模型进行异方差性检验,而是直接选择加权最小二乘法。如果确实存在异方差,则被有效地消除了;如果不存在异方差性,则加权最小二乘法等价于普通最小二乘法。采用时序数据作样本时,不考虑异方差性检验。,五、例题-中国农村居民人均消费函数,例 中国农村居民人均消费支出主要由人均纯收入来决定。农村人均纯收入包括(1)从事农业经营的收入,(2)包括从事其他产业的经营性收入(3)工资性收入、(4)财产收入(4)转
12、移支付收入。考察从事农业经营的收入(X1)和其他收入(X2)对中国农村居民消费支出(Y)增长的影响:,普通最小二乘法的估计结果:,异方差检验,进一步的统计检验,(1)G-Q检验,将原始数据按X2排成升序,去掉中间的7个数据,得两个容量为12的子样本。对两个子样本分别作OLS回归,求各自的残差平方和RSS1和RSS2:,子样本1:,(3.18)(4.13)(0.94)R2=0.7068,RSS1=0.0648,子样本2:,(0.43)(0.73)(6.53)R2=0.8339,RSS2=0.2729,计算F统计量:F=RSS2/RSS1=0.2792/0.0648=4.31,查表 给定=5%,查
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 违背基本假定问题 违背 基本 假定 问题 PPT 课件
链接地址:https://www.31ppt.com/p-5650650.html