《简正振动声子杨》PPT课件.ppt
《《简正振动声子杨》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《简正振动声子杨》PPT课件.ppt(48页珍藏版)》请在三一办公上搜索。
1、3.2 三维晶格的振动本节讨论三维晶格振动,得到晶格振动的基本特征和一些普遍的结论。,一、运动方程及其解设晶体原胞的基矢为a1、a2、a3;,沿基矢方向晶体各有N1、N2、N3个原胞,即晶体一共有NN1N2N3个原胞;,每个原胞内有n个原子,质量为,个原胞第p个原子的平衡点位置矢量为,第,原胞内第p个原子的位置矢量。,每个原胞中,n个不同原子平衡位置的相对坐标为,该原子相对于平衡点的位移为,它沿坐标轴的分量为,上式是3nN个相耦合的运动方程组。,是原子(l,p)与原子(l,p)之间的准弹性力系数,把一维晶格动力学方程的试解加以推广,设三维晶格行波试解为:,将试解代入运动方程,可得到3n个线性齐
2、次联立方程(由于晶格的平移对称性,使得3nN个联立方方程组减少到3n个):,使,有非零解的条件是系数行列式等于零:,由此可得到3n个色散关系,每个色散关系代表一支格波,共有3n支格波。,格波的色散关系中,有3支当,另外,3n-3支是描述原胞内各个原子之间的相对运动,称为光学支。,这三支称为声频波,它们是描述原胞与原胞之间的相对运动,其色散关系在长波近似下与弹性波类似,称为声学支;,波矢空间以,二、周期性边界条件确定模式数目,波矢q为,为倒基矢,则,根据波恩卡门边界条件,或写成,由(6)式,得,即,也就是说,应用到关系,为整数。代回(4)式,代表q空间均匀分布的点子.,若,是倒格矢,则,不变。,
3、因此q的取值可限制在第一布里渊区之内。,个q值。,倒空间原胞体积:,原胞体积,第一布里渊区里共有,波矢q的点在布里渊区中的密度为,如果q改变一个倒格子矢量,从三维晶格行波试解:,可以看出,q的作用只在于确定不同原胞之间振动位相的联系,具体表现在位相因子:,由于,不影响位相因子,因而对格波的描述没有任何区别。,晶格的一种振动模式,由此可知三维晶体中振动模式数目为3nN个。,对于有N个原胞的三维晶体,每个原胞有n个原子,每个原子有3个自由度,所以晶体的总自由度数也是3nN。,波矢q增加一个倒格矢,原子的位移保持不变。第一布里渊区。,晶格振动的波矢数目等于晶体的原胞数N;格波振动模式数目等于晶体中所
4、有原子的自由度数之和3nN。,概括起来,我们得到以下结论:,3.3 简正振动 声子理论考虑:前面我们根据牛顿定理用直接解运动方程的方法,求解一维链的振动模,得出如下结论:晶体中原子的集体振动-格波,可展开成简谐平面波的线性迭加。对微弱振动(简谐近似),每个格波就是一个简谐波,格波之间的相互作用可忽略,形成独立格波模式。在玻恩-卡门周期性边界条件下,得到分立的独立格波模式,可用独立简谐振子来表述。下面我们根据分析力学原理,引入简正坐标,直接过渡到量子理论,并引入声子概念晶格振动中的简谐振子的能量量子。,一、简谐近似和简正坐标,数学处理:通过引入简正坐标,将晶格振动总能量(哈密顿量)=动能+势能(
5、化成)=独立简谐振子能量之和,从经典力学的观点,晶格振动是一个典型的小振动问题,凡是力学体系自平衡位置发生微小偏移时,该力学体系的运动都是小振动。上一节关于晶格的运动方程之所以能够化成线性齐次方程组,是简谐近似的结果,即忽略原子相互作用的非线性项得到的。处理小振动问题的理论方法和主要结果做为晶格振动这部分内容的理论基础。,在第二章我们已经讨论过,当原子处于平衡位置时,原子间的相互作用势能,取最小值。,相互作用势能是原子偏离平衡位置位移的函数。N个原子的位移矢量共有3N个分量,写成,原子相互作用势能是这些位移分量的函数,即,将,在平衡位置展开成泰勒级数,因在平衡位置势能取极小值,所以上式右端第二
6、项为零,若取U0为能量零点,并略去二次以上的高次项,得到,上式即为简谐近似下,势能的表示式,包含了位移交叉项。,处理小振动问题一般都取简谐近似。,对于一个具体的物理问题是否可以采用简谐近似,要看在简谐近似条件下得到的理论结果是否与实验相一致。在有些物理问题中就需要考虑高阶项的作用,称为非谐作用。,为了消去势能中的交叉项,使问题简化,引入简正坐标,N个原子体系的动能函数为,简正坐标与原子的位移坐标之间的正交变换关系:,在简正坐标中,势能和动能化成,由上式可得出正则动量,振动系统的拉格朗日函数为:,于是系统的哈密顿函数化成,将上式代入正则方程,得到,这是3N个相互无关的谐振子的运动方程,表明各简正
7、坐标描述独立的简正振动。,借助简正坐标,将N个相互耦合关联的原子组成的晶格的振动转化为3N个独立的谐振子的简谐振动。,其中,任意简正坐标的解为,:振动的圆频率,原子的位移坐标和简正坐标间存在着正交变换关系:,上式表明,每一个原子都以相同的频率作振动。,当只考虑某一个Qj的振动时,位移坐标可表示为,一个简正振动与位移坐标不同,不再只和个别原子相联系,而是表示整个晶体所有原子都参与的振动,而且它们振动频率相同。,二、一维简单晶格,说明二个问题:,(1)简正坐标的引入前面根据牛顿定理得到的原子运动方程的试解为,晶格振动等价于N个谐振子的振动,谐振子的振动频率就是晶格的振动频率;根据牛顿定理用直接解运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 简正振动声子杨 振动 声子杨 PPT 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5640794.html