《坏数据处理》PPT课件.ppt
《《坏数据处理》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《坏数据处理》PPT课件.ppt(34页珍藏版)》请在三一办公上搜索。
1、Function:Provide network structure 提供网络结构 Provide system state 提供系统实际运行状态 Identify bad measurement data 识别测量坏数据Identify erroneous status information 识别错误状态信息,SE,ParameterR,X,B/2,K,MeasurementsPiQiPijQijPjiQjiVi,Status0,1,Network structureY matrix,System stateV as well asPiQiPijQijPjiQji,State Estima
2、tion 状态估计包含,-Bad data-analog measurement 坏数据-遥测(power flows,voltage magnitude功率、电压值)-Topology errors-logic one 拓扑错误-遥信(status of breakers and switchers 开关量)-Sudden load(state)change-only appears in DSE 负荷突变-只在动态状态估计中涉及,Estimation algorithm 估计计算Treatment of anormalies 不正常事件处理,9.3 bad data detection a
3、nd identification 坏数据的检测与识别 contaminate submerge,The object function of SE should be 状态估计的目标函数测量误差最小 the minimization of the measurement error.error=measured value-true value 误差=测量值-真值,Since the true values can not be known,由于真值不知道,只能用 the residuals are used instead of them.残差来代替residual=measured va
4、lue-estimated value 残差=测量值-估计值,The precondition of the method assumes that the error is in the form of gauss distribution noise.It seeks an average value and better result can be obtained from redundant measurements.,When there are bad data,v i 3 i,only after 若测量值是不良数据,即 the bad datas influence is e
5、xcluded,the reliable v i 3 I 则必须排除坏数据 results can be obtained.的影响,才能得到可信的结果,前提是误差 v 是高斯分布 的噪声,多次测量寻求某 种平均值,可以得到较好的结果,measurement测量值 1-2-2,the measurement 测量值 1-2 the estimate value 估计值 object function J=(-.5)2+(-.5)2=0.5 is minimum,and both residuals are-0.5,Example 1:two measurements,Delete the mea
6、sure with lager residual 删除残差大的测量值-2-2,Example 2:three measurement 三个测量值,the estimate results are not good.估计结果偏差较大,estimate value估计值 1.67-1.67-1.67,residual残差-.67-0.33-0.33,-2.00-2.00 The estimate results become much better.估计结果较好,Observability detectability and identifiability 可观测性、可检测性、可识别性,Detec
7、tion:the process justifying if there are bad data and selecting which data are suspicious ones.,Identification:the process of verifying true 不良数据识别:bad data among suspicious ones 验证真正不良数据的过程,Measurement error:量测错误:solid error:just at the SE installation period 稳定错,刚安装状态估计 random error:measuring and
8、transmitting process 随机错,量测、传输受到干扰,Measurement system redundancy 量测系统冗余度 K=m-n-the ability to exclude bad data 排除坏数据的能力The measurements should be distributed evenly 量测均匀分布Observability:the voltage magnitude and phase angle can be calculated,and the inverse matrix of HTR-1H can be found.可观测性:能计算出电压幅值
9、和相角,HTR-1H可求逆,不良数据检测:判断是否存在不良数据,并指出可疑量测数据的过程,Example:A measurement system with m(=14)measurements.The number of state variables is n(=7)1 2 4 3,Since the measurement are not distributed evenly,the v4and 4 can not be calculated by the give measurement system但由于测量不均匀,算不出v4和4,v,v-voltage measurement-P+
10、jQ measurement pair,v,不良数据检测与辨识基本原理the basic principles of bad data detection and identification,We want to establish the relationship between residuals and errors,and justify the bad data 建立残差和误差的关系,根据残差判断误差较大的不良数据,x真值,在真值附近线性化,Substitute it into the residual equation 代入残差方程,Now the true value is s
11、elected as starting point,W is called residual-sensitivity matrix of mm 残差灵敏度矩阵,Since the rank of residual sensitivity matrix is m-nm,the equation can not be solved to find v.However,some suspicious measurement can be judged.残差灵敏度矩阵的秩为m-n,不能求解出v.但可以判断出一些可疑量测。ri=wi Wii vi,The ith residual is the co-a
12、ction of all the measurement errors 第 i 个残差是全部量测误差的联合作用,残差灵敏度矩阵的性质,The degree of interaction is ascertained by the magnitude of element Wi,k.Only if the diagonal element of matrix W is largest in its row,the residual can correctly reflect corresponding error.相互影响程度,由灵敏度矩阵Wi,k的大小来确定。只有W矩阵对角占优,残差才能反映误
13、差的大小。W is related to network configuration as well as measurement system allocation.At the place of poor measurement allocation,diagonal element may not be lager.In the extreme condition,m=n,and r=0.W和与电网结构和量测配置有关,量测配置薄弱的地方甚至无优势,极限情况m=n,残差r=0。The ith error will affect other residuals according to wj
14、i 第 i 个误差将会依据wji的大小影响其它残差,ri=wi vi,残差灵敏度矩阵的性质,ri=wi Wii vi,9.3.2 detection method 不良数据的检测方法,The requirement for detection:minimize the number of suspicious data as possible,in condition of not letting any bad data undetected 检测要求:不漏掉不良数据的条件下,尽可能缩小可疑数据范围primary detection 粗检测:SCADAdetection by residua
15、l 残差检测detection by sudden measurement change 量测量突变the combine detection by residual and sudden measurement change 残差与突变联合检测,9.3.2.1.Primary detection in SCAD 粗 检测The evident bad data can be removed by limit value detection,as example,the voltage value of 1.4p.u.SCADA中进行极限值检测,去掉明显不良数据,如电压功率明显偏大,9.3.2
16、.2.Detection by residual:残差检测:Weighted residual 加权残差 rw=R-1/2r|rw,i|w,i w,i is the threshold of weighted residual 加权残差检测的门槛值,Ri=i2is the measurement variance.The larger the variance,the smaller part the measurement takes in estimation.Therefore larger weighted residual could be treated as bad one.量测
17、方差,方差大,估计中所占比重小,残差较大才认为是坏数据Normalized residual 标准化残差 rN=D-1/2r|rN,i|N,i w,i is the threshold for normalized residual 标准化残差检测的门槛值,D=diagWR The detection by rN has better properties for single bad data identification,but it needs more calculation of D.标准化残差检测单个不良数据的性能好,计算量大,9.3.2.3 Measurement sudden
18、change-overcome the submerge of residuals 量测突变检测-克服残差淹没,While there are two bad data,i and k,两个坏数据,误差vi,vk的绝对值较大vi and vk are large in absolute values.The ith residual will be 第I个残差将是 r i Wiivi+WikvkIf Wii and Wik are similar in value,若Wii和Wik数值接近,符号相反but opposite in sign,we have Wii-Wik,The residua
19、l r i will be small in absolute value,当vi 和 vk近似相等时,when vi and vk are nearly equal simultaneously 的绝对值将会很小 This case is called residual submerge 叫作残差淹没,0,Example:,When P1 and P12 are bad data(不良数据),their residuals are(其残差)r1=1.3MW and r12=1.1MWmuch less than the other residuals 小于其他 残差 r13=-4.4MW r
20、31=-4.2MW r32=-4.9MW,Precondition for detection of measurement sudden change:no topology changes and state changes,and also the data in the previous intervals are reliable,量测量突变检测前提:无拓扑等运行状态变化,前一时刻数据可靠,Take the measurement change between two sampling C i=z i(k)-z i(k-1)|C i|c k is the number of time
21、 interval c is the threshold,量测量两次采样的变化量 C i=z i(k)-z i(k-1)|C i|c k 为采样序号,c 为突变检测门槛值,The advantage of this method is that it dose not influenced by multi bad data,but it is necessary that there are not larger operating state changes between two time intervals.,突变检测的优点是不受多个坏数据的影响,但两次采样的运行状态没有大的变化,量测
22、突变检测,9.3.2.4.The combinatorial detection of residual and sudden measurement change 残差与突变联合检测,Combinatorial detecting index 联合检测指标S S i=Krw|rw,i|+K cw|C w,i|kKrw is one combinatorial coefficient concerning weighing residual 为联合检测中加权残差联合系数,Kcw is another combinatorial coefficient concerning sudden mea
23、surement change 为联合检测中加权突变联合系数,C w,iweighted sudden changing variable 加权突变量,C w,i=Ri-1/2C iWhen Krw=1,Kcw=0,it is the weighted residual detection 即为加权残差检测When Krw=0,Kcw=1,it is the sudden measurement change detection 即为加权突变检测,9.3.3 The identification of bad data 不良数据的辨识方法,The identification method R
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 坏数据处理 数据处理 PPT 课件

链接地址:https://www.31ppt.com/p-5631352.html