《非晶态合金》PPT课件.ppt
《《非晶态合金》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《非晶态合金》PPT课件.ppt(104页珍藏版)》请在三一办公上搜索。
1、王 念重庆交通大学土木建筑学院材料科学与工程系,功 能 材 料,6 非晶态合金,非晶态合金俗称“金属玻璃”。以极高速度使熔融状态的合金冷却,凝固后的合金结构呈玻璃态。非晶态合金与金属相比,成分基本相同,但结构不同,引起二者在性能上以差异。,主要内容非晶态合金的发展非晶态合金的结构非晶态合金的性能非晶态合金的制备非晶态合金的应用,自然界中各种物质按不同物理状态可分为有序结构和无序结构两大类。晶体为典型有序结构,气体、液体以及非晶态固体都属于无序结构。人们最先认识的非晶固体是玻璃等非金属物质,所以玻璃在一定程度上成为非晶材料的代名词。,石英,玻璃,1970年,杜韦兹创立快速凝固技术,从Au-Si合
2、金熔体中制备了非晶合金,非晶概念才开始与固态金属与合金联系在一起,常用金属玻璃(metallic glass)来表示非晶合金。随着更多非晶合金的发现以及它们所具有的各种独特性能的揭示,非晶已不仅作为合金在快速凝固中出现的一种亚稳相,还成为一类重要的功能材料。,非晶合金带材,非晶态合金的发展,1845年,沃茨通过将镍的磷化物溶液分解在铁基体上获得镍的沉积物,这种沉积物很可能就是人类第一次获得的非晶态金属,但当时由于还没有发现X射线衍射技术,因此未能得到证实。历史上有关非晶合金的第一个报导是克拉模在1934年用蒸发沉积制得的。1947年,布伦列等人用电解和化学沉积获得了Ni-P和Co-P的非晶薄膜
3、,发现其有高硬度、耐腐蚀特性,可用作金属表面的防护涂层,这是非晶材料最早的工业应用,但并末引起广泛注意。,1958年,安德森提出:当晶格无序度超过一定临界标准后,固体中的电子扩散将会消失。同年,在美国阿尔弗雷德召开了第一次非晶态固体国际会议。从此,非晶物理与材料的研究发展成为材料科学的一个重要分支。1960年,古贝蒙维从理论上预示非晶固体具有铁磁性:晶态固体的电子能带过渡到液态时不会有任何基本形式的改变,这意味着能带结构更依赖于短程序,而不是长程序,交换作用与短程序相关而与晶格结构并无必然的联系。因此,短程序的非晶固体应具有铁磁性。,1965年,马德和诺维克在真空沉积的Co-Au合金薄膜中发现
4、了非晶的铁磁性。1970年,杜威兹等用喷枪法将70%Au-30%Si液态金属高速急冷制成非晶合金,这种方法使工业化大规模生产非晶合金成为可能。1973年,美国生产出具有很好导磁和耐蚀性能的非晶铁基合金薄带,非晶合金的研究和应用受到世界各国广泛的重视。,非晶Fe基带材,我国非晶合金的研究开始于七十年代中期。1982年,我国建立非晶合金牌号,批量(50kg/次)生产宽度为50-100mm的薄带并制成大功率变压器、开关变压器等铁芯。用非晶材料制成磁头可用于录音、录像;用于各种传感器的非晶圈丝、薄带及薄膜也研制成功;非晶薄膜用于磁记录技术方面也取得重大成果。,非晶磁头,非晶态合金的结构特征,非晶态合金
5、的结构,研究非晶态材料结构所用的实验技术目前主要沿用分析晶体结构的方法,其中最直接、最有效的方法是通过散射来研究非晶态材料中原子的排列状况。由散射实验测得散射强度的空间分布,再计算出原子的径向分布函数,然后,由径向分布函数求出最近邻原子数及最近原子间距离等参数,依照这些参数,描述原子排列情况及材料的结构。根据辐射粒子的种类,可将散射实验分类,如表6-1所示。,表6-1 各种散射实验比较,注:NMR核磁共振,ESR电子自旋共振,XPSX射线光电子谱,EXAFS扩展X射线吸收精细结构,SAS小角度散射,INS滞弹性中子散射。,目前分析非晶态结构,最普遍的方法是X射线射及电子衍射,中子衍射方法也开始
6、受到重视。近年来还发展了用扩展X射线吸收精细结构(EXAFS)的方法研究非晶态材料的结构。这种方法是根据X射线在某种元素原子的吸收限附近吸收系数的精细变化,来分析非晶态材料中原子的近程排列情况。EXAFS和X射线衍射法相结合,对于非晶态结构的分析更为有利。,利用衍射方法测定结构,最主要的信息是分布函数,用来描述材料中的原子分布。双体分布函数g(r)相当于取某一原子为原点(r=0)时,在距原点为r处找到另一原子的几率,由此描述原子排列情况。,图6-1为气体、固体、液体的原子分布函数。,图6-1 气体、固体、液体的原子分布函数,径向分布函数,其中NV为原子的密度。,根据g(r)-r曲线,可求得两个
7、重要参数:配位数和原于间距。从图中可以看出,非晶态的图形与液态很相似但略有不同,而和完全无序的气态及有序的晶态有明显的区别。这说明非晶态在结构上与液体相似,原子排列是短程有序的;从总体结构上看是长程无序的,宏观上可将其看作均匀、各向同性的。非晶态结构的另一个基本特征是热力学的不稳定性,存在向晶态转化的趋势,即原子趋于规则排列。,为了进一步了解非晶态的结构,通常在理论上把非晶态材料中原子的排列情况模型化,其模型归纳起来可分两大类。一类是不连续模型,如微晶模型,聚集团模型;另一类是连续模型,如连续无规网络模型,硬球无规密堆模型等。,1微晶模型该模型认为非晶态材料是由“晶粒”非常细小的微晶粒组成。从
8、这个角度出发,非晶态结构和多晶体结构相似,只是“晶粒“尺寸只有几埃到几十埃。微晶模型认为微晶内的短程有序结构和晶态相同,但各个微晶的取向是杂乱分布的,形成长程无序结构。从微晶模型计算得出的分布函数和衍射实验结果定性相符,但细节上(定量上)符合得并不理想。,假设微晶内原子按hcp,fcc等不同方式排列时,非晶Ni的双体分布函数g(r)的计算结果与实验结果比较如图6-2所示。另外,微晶模型用于描述非晶态结构中原子排列情况还存在许多问题,使人们逐渐对其持否定态度。,图6-2 微晶模型得出的径向分布函数与 非晶态Ni实验结果的比较,2拓扑无序模型 该模型认为非晶态结构的主要特征是原子排列的混乱和随机性
9、,强调结构的无序性,而把短程有序看作是无规堆积时附带产生的结果。在这一前提下,拓扑无序模型有多种形式,主要有无序密堆硬球模型和随机网络模型。,无序密堆硬球模型是由贝尔纳提出,用于研究液态金属的结构。贝尔纳发现无序密堆结构仅由五种不同的多面体组成,如图6-3,称为贝尔纳多面体。,图6-3 贝尔纳多面体,在无序密堆硬球模型中,这些多面体作不规则的但又是连续的堆积,该模型所得出的双体分布函数与实验结果定性相符,但细节上也存在误差。随机网络模型的基本出发点是保持最近原子的键长、键角关系基本恒定,以满足化学键的要求。该模型的径向分布函数与实验结果符合得很好。上述模型对于描述非晶态材料的真实结构还远远不够
10、准确。但目前用其解释非晶态材料的某些特性如弹性,磁性等,还是取得了一定的成功。,短程有序非晶态合金的结构特点是:原子在三维空间呈拓扑无序状排列,不存在长程周期性,但在几个原子间距的范围内,原子的排列仍然有着一定的规律,因此可以认为非晶态合金的原子结构为“长程无序,短程有序”。通常定义非晶态合金的短程有序区小于1.5nm,即不超过4-5个原子间距,从而与纳米晶或微晶相区别。短程有序可分为化学短程有序和拓扑短程有序两类。,(1)化学短程有序。合金中的每一类合金元素原子周围的原子化学组成均与合金的平均值不同,称化学短程有序。实际获得的非晶态金属至少含有两个组元,除了不同类原子的尺度差别、稳定相结构和
11、原子长程迁移率等因素以外,不同类原子之间的原子作用力在非晶态合金的形成过程中起着重要作用。化学短程有序的影响通常只局限于最近邻原子。(2)拓扑短程有序。指围绕某一原子的局域结构的短程有序。常用几种不同的结构参数描述非晶态与合金的结构特征,主要有原子分布函数、干涉函数、最近邻原子距离与配位数和质量密度。,非晶体与晶体都是由气态、液态凝结而成的固体,由于冷却速率不同,造成结构的迥然不同。晶体是典型的有序结构,原子有规则地排列在晶体点阵上形成对称性;非晶态与气态、液态在结构上同属无序结构,它是通过足够快的冷却发生液体的连续转变,冻结成非晶态固体。,非晶固体的原子类似液体原子的排列状态,但它与液体又有
12、不同:液体分子很易滑动,粘滞系数很小;非晶固体分子是不能滑动的,粘滞系数约为液体的1014倍,它具有很大的刚性与固定形状。液体原子随机排列,除局部结构起伏外,几乎是完全无序混乱;非晶排列无序并不是完全混乱,而是破坏了长程有序的周期性和平移对称性,形成一种有缺陷的、不完整的有序,即最近邻或局域短程有序(在小于几个原子间距的区间内保持着位形和组分的某些有序特征)。,非晶材料在微观结构上具有以下基本特征:存在小区间的短程有序,在近邻或次近邻原子的键合具有一定规律性,但没有任何长程有序。温度升高,非晶材料会发生明显的结构转变,因此它是一类亚稳态材料,但亚稳态转变到自由能最低的稳态须克服一定的能量势垒,
13、因此这种亚稳态在一定温度范围内长期稳定存在;当加热温度超过一定值Tc(晶化温度)后就会发生稳定化转变,形成晶态合金。,金属玻璃结构亚稳性不仅包括温度达到Tc以上发生的晶化,还包括低温加热时发生的结构弛豫。在低于晶化温度Tc下退火时,合金内部原子的相对位置会发生较小变化,合金密度增加,应力减小,能量降低,使金属玻璃的结构逐步接近有序度较高的“理想玻璃”结构,这种结构变化称为结构弛豫。发生结构弛豫的同时,非晶合金的密度、比热、粘度、电阻、弹性模量等性质也会产生相应变化。,金属玻璃在高于晶化温度Tc退火时,由于热激活的能量增大,非晶合金克服稳定化转变势垒,转变成自由能更低的晶态。晶化中金属玻璃的结构
14、变化较大,一般涉及原子长程扩散,所需激活能比发生结构弛豫时高。晶化中发生相应的结构变化,合金许多性质也会产生较大的变化。,晶化热处理,非晶晶化结晶与凝固结晶类似,也是一个形核和长大的过程。晶化是固态反应过程,受原子在固相中的扩散支配,所以晶化速度没有凝固结晶快。非晶比熔体在结构上更接近晶态,晶化形核时作为主要阻力的界面能比凝固时固液界面能小,因而形核率很高,非晶合金晶化后晶粒十分细小。实际快速凝固中,形成非晶同时也可能形成一些细小的晶粒,它们在非晶晶化时可作为非均匀形核媒质。此外,非晶中的夹杂物、自由表面等都可使晶化以非均匀形核方式进行。,非晶的结构弛豫和晶化都是结构失稳时产生的变化,非晶的结
15、构稳定性主要取决以下因素:合金组元的种类和含量:组元种类和含量的变化会改变原子键合强度和短程有序程度。凝固冷速:冷速越高,金属玻璃的自由能就会越高,相应的结构稳定性会越低,在一定条件下越容易产生结构弛豫和晶化。选择适当的凝固冷速对保证金属玻璃稳定性十分重要。,其它一些因素也能影响金属玻璃的结构稳定性:退火温度一定时,组态熵较大的合金晶化激活能较大,非晶发生结构弛豫或晶化所需激活能越大,非晶结构就越稳定。玻璃形成能力(GFA)较强的合金形成的非晶结构稳定性较高,共晶成分或接近共晶成分的合金GFA很强,它们形成的非晶稳定性一般都很高。中子辐照可使极细晶粒非晶化,消除非晶合金晶化时非均匀形核媒质,提
16、高非晶合金的稳定性。,非晶合金的制备方法,原则上,所有金属熔体都可以通过急冷制成非晶体。也就是说,只要冷却速度足够快使熔体中原子来不及作规则排列就完成凝固过程,即可形成非晶态金属。,但实际上,要使一种材料非晶化,还得考虑材料本身的内在因素,主要是材料的成分及各组元的化学本质。如大多数纯金属即使在106Ks的冷速下也无法非晶化,而在目前的冷却条件下,已制成了许多非晶态合金。,非晶态材料的制备,对于一种材料,需要多大的冷却速度才能获得非晶态,或者说,根据什么可以判断一种材料在某一冷却速度下能否形成非晶态,这是制备非晶态材料的一个关键问题。目前的判据主要有结构判据和动力学判据。结构判据是根据原子的几
17、何排列,原子间的键合状态,及原子尺寸等参数来预测玻璃态是否易于形成;动力学判据考虑冷却速度和结晶动力学之间的关系,即需要多高的冷却速度才能阻止形核及核长大。,根据动力学的处理方法,把非晶态的形成看成是由于形核率和生长速率很小,或者看成是在一定过冷度下形成的体结晶分数(结晶的体积分数)非常小(小于10-6)的结果。这样,可以用经典的结晶理论来讨论非晶态的形成,并定量确定非晶态形成的动力学条件。,如图6-4,做出金属及合金的等温转变图(TTT图,即Time-Temperature-Transformation时间-温度-转变),由于TTT图通常呈“C”形状,所以也称C曲线。C曲线的左侧为非晶态区,
18、当纯金属或合金从熔化状态快速冷却时,只要能避开C曲线的鼻尖便可以形成非晶态。,图6-4 纯Ni,Au77.8Ge13.8Si8.4,Pd82Si18,Pd77.5Cu6Si16.5的C曲线,从图中可以看出,不同成分的合金,形成非晶态的临界冷却速度是不同的。临界冷却速度从TTT图可以估算出来 Rc=(Tm-Tn)tn 式中Tm为熔点,Tn,tn分别为C曲线鼻尖所对应的温度和时间。,若考虑实际冷却过程,就要作出合金的连续冷却转变图(CCT图,即Continous-Cooling-Transformation),如图6-5,图中示出了临界冷却速度。,图6-5 几种非晶态合金的CCT图及TTT图,研究
19、表明,合金中组元间电负性及原子尺寸大小与非晶态的形成有很大关系。组元间电负性及原子尺寸相差越大(1020),越容易形成非晶态。在相图上,成分位于共晶点附近的合金,其Tm一般较低,即液相可以保持到较低温度,而同时其玻璃化温度Tg随溶质原子浓度的增加而增加,令T=Tm-Tg,T随溶质原子的增加而减小,有利于非晶态的形成。,合金非晶态的形成倾向与稳定性通常用TTmTg或TxTxTg来描述,其中Tm、Tg和Tx分别为熔点、玻璃化温度和晶化温度,T减小时,获得非晶态的几率增加,容易形成非晶态。因此,提高非晶转变温度Tg或降低熔点Tm都有利于非晶态的形成;若玻璃转变温度Tg保持不变,晶化温度Tx增高将使非
20、晶态的稳定性增加。,有人选用化学键参数,引用“图象识别”技术,总结了二元非晶态合金形成条件的规律。如图6-6,图中横坐标|XpA-XpB|是A,B两组元电负性差的绝对值,纵坐标中Z是化合价数,rk是原子半经,(Xp)A是A组元的电负性偏离线性关系的值,即纵坐标代表A,B原子因极化作用而引起的效应。总的来看,由一种过渡金属或贵金属和类金属元素(B,C,N,P,Si)组成的合金易形成非晶态。,图6-6二元系形成非晶态合金的键参数判别曲线,非晶态合金的形成条件要制得非晶态合金必须有两个先决条件:首先需要有足够高的冷却速度,临界冷却速度要大于106/s;另外合金非晶化温度(玻璃化温度)要高于室温。从热
21、力学和结晶学的理论出发,要形成非晶态合金还应该满足以下的要求:(1)合金组元间的原子半径差要大于10;(2)合金组元的电负性差异合宜(不能太大,也不能过小);(3)合金熔体具有大的黏度,使原子的扩散阻力增加。,非晶态合金一般可以由以下合金组成:(1)过渡金属、贵金属与类金属的组合。过渡金属、贵金属为Fe、Co、Ni、Au等;类金属为B、Si、P、C等。(2)过渡金属的前部元素和后端元素之间的组合。例如,Zr-Cu、Nb-Ni、Zr-Pd等。(3)稀土元素与过渡金属的组合。稀土元素主要是Ga、Tb、Dy;过渡元素为Fe、Co。(4)过渡金属与非过渡金属之间的组合。如(Ti、Zr)-Be,Al-C
22、r。(5)非过渡金属之间的组合。如Mg-Zn。,其中三元合金或者多元合金更容易形成非晶合金一般常用的过渡金属是:Ti、V、Mn、Fe、Co、Ni等;贵重金属是:Au、Cu等;类金属是:B、C、Si、P等;非过渡金属是:Zn、Al等。对于合金的成分在具体选择时,以共晶、包晶或它们附近的成分更容易形成非晶合金。,常见的非晶态合金,迄今为止,非晶态合金的种类已达数百种之多。,1)过渡族金属与类金属元素形成的合金主要包括VIIB,VIIIB族及IB族元素与类金属元素形成的合金,如Pd80Si20,Au75Si25,Fe80B20,Pt75P25等,合金中类金属元素的含量一般在1325(原子百分比)。但
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 非晶态合金 PPT 课件

链接地址:https://www.31ppt.com/p-5619247.html