[其它]统计学基础04第4章数据分布特征的描述.ppt
《[其它]统计学基础04第4章数据分布特征的描述.ppt》由会员分享,可在线阅读,更多相关《[其它]统计学基础04第4章数据分布特征的描述.ppt(77页珍藏版)》请在三一办公上搜索。
1、第 4 章 数据分布特征的测度,第 4 章 数据分布特征的测度,4.1 集中趋势的测度 4.2 离散程度的测度4.3 偏态与峰度的测度,学习目标,1.集中趋势各测度值的计算方法2.集中趋势各测度值的特点及应用场合3.离散程度各测度值的计算方法4.离散程度各测度值的特点及应用场合偏态与峰态的测度方法用Excel计算描述统计量并进行分析,数据分布的特征,数据分布特征的测度,4.1 集中趋势的测度,一.分类数据:众数二.顺序数据:中位数和分位数三.数值型数据:均值四.众数、中位数和均值的比较,分类数据:众数,众数(mode),一组数据中出现次数最多的变量值适合于数据量较多时使用不受极端值的影响一组数
2、据可能没有众数或有几个众数主要用于分类数据,也可用于顺序数据和数值型数据,众数(不惟一性),无众数原始数据:10 5 9 12 6 8,一个众数原始数据:6 5 9 8 5 5,多于一个众数原始数据:25 28 28 36 42 42,分类数据的众数(例题分析),解:这里的变量为“饮料品牌”,这是个分类变量,不同类型的饮料就是变量值 所调查的50人中,购买可口可乐的人数最多,为15人,占总被调查人数的30%,因此众数为“可口可乐”这一品牌,即 Mo可口可乐,顺序数据的众数(例题分析),解:这里的数据为顺序数据。变量为“回答类别”甲城市中对住房表示不满意的户数最多,为108户,因此众数为“不满意
3、”这一类别,即 Mo不满意,顺序数据:中位数和分位数,中位数(median),排序后处于中间位置上的值,不受极端值的影响主要用于顺序数据,也可用数值型数据,但不能用于分类数据各变量值与中位数的离差绝对值之和最小,即,中位数(位置的确定),原始数据:,顺序数据:,顺序数据的中位数(例题分析),解:中位数的位置为 300/2150 从累计频数看,中位数在“一般”这一组别中 中位数为 Me=一般,数值型数据的中位数(9个数据的算例),【例】9个家庭的人均月收入数据原始数据:1500 750 780 1080 850 960 2000 1250 1630排 序:750 780 850 960 1080
4、 1250 1500 1630 2000位 置:1 2 3 4 5 6 7 8 9,中位数 1080,数值型数据的中位数(10个数据的算例),【例】:10个家庭的人均月收入数据排 序:660 750 780 850 960 1080 1250 1500 1630 2000位 置:1 2 3 4 5 6 7 8 9 10,四分位数(quartile),排序后处于25%和75%位置上的值,不受极端值的影响主要用于顺序数据,也可用于数值型数据,但不能用于分类数据,四分位数(位置的确定),原始数据:,顺序数据:,顺序数据的四分位数(例题分析),解:QL位置=(300)/4=75 QU位置=(3300)
5、/4=225 从累计频数看,QL在“不满意”这一组别中;QU在“一般”这一组别中 四分位数为 QL=不满意 QU=一般,数值型数据的四分位数(9个数据的算例),【例】:9个家庭的人均月收入数据原始数据:1500 750 780 1080 850 960 2000 1250 1630排 序:750 780 850 960 1080 1250 1500 1630 2000位 置:1 2 3 4 5 6 7 8 9,数值型数据的四分位数(10个数据的算例),【例】:10个家庭的人均月收入数据排 序:660 750 780 850 960 1080 1250 1500 1630 2000位 置:1 2
6、 3 4 5 6 7 8 9 10,数值型数据:平均数,平均数(mean),集中趋势的最常用测度值一组数据的均衡点所在体现了数据的必然性特征易受极端值的影响用于数值型数据,不能用于分类数据和顺序数据,简单均值(Simple mean),设一组数据为:x1,x2,xn(xN),样本均值,总体均值,加权均值(Weighted mean),设各组的组中值为:M1,M2,Mk 相应的频数为:f1,f2,fk,样本加权均值,总体加权均值,已改至此!,加权平均数(例题分析),加权平均数(权数对均值的影响),甲乙两组各有10名学生,他们的考试成绩及其分布数据如下 甲组:考试成绩(x):0 20 100 人数
7、分布(f):1 1 8 乙组:考试成绩(x):0 20 100 人数分布(f):8 1 1,几何平均数(geometric mean),n 个变量值乘积的 n 次方根适用于对比率数据的平均主要用于计算平均增长率计算公式为,几何平均数(例题分析),【例】一位投资者购持有一种股票,在2000、2001、2002和2003年收益率分别为4.5%、2.1%、25.5%、1.9%。计算该投资者在这四年内的平均收益率,算术平均:,几何平均:,众数、中位数和平均数的比较,众数、中位数和平均数的关系,众数、中位数、平均数的特点和应用,众数不受极端值影响具有不惟一性数据分布偏斜程度较大时应用中位数不受极端值影响
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 其它 其它统计学基础04第4章 数据分布特征的描述 统计学 基础 04 数据 分布 特征 描述
链接地址:https://www.31ppt.com/p-5616360.html