[信息与通信]电磁场与电磁波第5章.ppt
《[信息与通信]电磁场与电磁波第5章.ppt》由会员分享,可在线阅读,更多相关《[信息与通信]电磁场与电磁波第5章.ppt(56页珍藏版)》请在三一办公上搜索。
1、第5章 静态场的解,静态场是指场量不随时间变化的场。静态场包括:静电场、恒定电场及恒定磁场,它们是时变电磁场的特例。分析静态场,必须从麦克斯韦方程组这个电磁场的普遍规律出发,导出静态场中的麦克斯韦方程组,即描述静态场特性的基本方程。再根据它们的特性,联合物态方程推导出位函数的泊松方程和拉普拉斯方程。最后,静态场问题可归结为求泊松方程和拉普拉斯方程解的问题。通常求解这两个方程的方法有:镜像法、分离变量法和复变函数法,它们属于解析法,而在近似计算中常用有限差分法。,1.静电场、恒定电场、恒定磁场的基本方程,4.镜像法、分离变量法、格林函数法、有限差分法,重点:,3.求解静态场位函数方程的方法所依据
2、的理论:对偶原理、叠加原理、唯一性定理,2.静态场的位函数方程,5.1 泊松方程和拉普拉斯方程,5.1.1 静态场中的麦克斯韦方程组,对于静态场,各场量只是空间坐标的函数,并不随时间而变化,即与时间t无关。因此,静态场的麦克斯韦方程组为:,电流连续性方程为:,由上述方程组可知,静态场与时变场最基本的区别在于静态场的电场和磁场是彼此独立存在的,即电场只由电荷产生,磁场只由电流产生。没有变化的磁场,也没有变化的电场。既然如此,我们就可以分别写出静电场、恒定电场和恒定磁场的基本方程。,1、静电场的基本方程,静电场是静止电荷或静止带电体产生的场,其基本方程为,上式表明:静电场中的旋度为0,即静电场中的
3、电场不可能由旋涡源产生;电荷是产生电场的通量源。,另外:电介质的物态方程为,静电场是一个有源无旋场,所以静电场可用电位函数来描述,即,2、恒定电场的基本方程,载有恒定电流的导体内部及其周围介质中产生的电场,即为恒定电场。当导体中有电流时,由于导体电阻的存在,要在导体中维持恒定电流,必须依靠外部电源提供能量,其电源内部的电场也是恒定的。,要想在导线中维持恒定电流,必须依靠非静电力将B极板的正电荷抵抗电场力搬到A极板。这种提供非静电力将其它形式的能量转为电能装置称为电源。,若一闭合路径经过电源,则:,即电场强度 的线积分等于电源的电动势,若闭合路径不经过电源,则:,这是恒定电场在无源区的基本方程积
4、分形式,其微分形式为,从以上分析可知,恒定电场的无源区域也是一个位场,也可用一个标量函数来描述。,另外:导体中的物态方程为,3、恒定磁场的基本方程,这是恒定磁场的基本方程。,从以上方程可知,恒定磁场是一个旋涡场,电流是这个旋涡场的源,电流线是闭合的。,另外:磁介质中的物态方程为,恒定电流的导体周围或内部不仅存在电场,而且存在磁场,但这个磁场不随时间变化,是恒定磁场。假设导体中的传导电流为I,电流密度为,则有,静电场既然是一个位场,就可以用一个标量函数 的梯度来表示它:,5.1.2 泊松方程和拉普拉斯方程,1、静电场的位函数分布,即,式中的标量函数 称为电位函数。,所以有,对于均匀、线性、各向同
5、性的介质,为常数,即,静电场的位函数 满足的方程。,上式即为在有电荷分布的区域内,或者说在有“源”的区域内,静电场的电位函数所满足的方程,我们将这种形式的方程称为 泊松方程。,如果场中某处有=0,即在无源区域,则上式变为,在直角坐标系中,在圆柱坐标系中,在球坐标系中,2、恒定电场的位函数分布,根据电流连续性方程 及物态方程 并设电导率 为一常数(对应于均匀导电媒质),则有,则有,在无源区域,恒定电场是一个位场,即有,这时同样可以引入一个标量位函数 使得,这说明,在无源区域,恒定电场的位函数满足拉普拉斯方程。,3、恒定磁场的位函数分布,人为规定,(1)磁场的矢量位函数,这个规定被称为库仑规范,于
6、是有,此式即为矢量磁位的泊松方程。,恒定磁场是有旋场,即,但它却是无散场,即 引入一个矢量磁位 后,由于,可得,此式即为矢量磁位的拉普拉斯方程。,在没有电流的区域,所以有,在没有电流分布的区域内,恒定磁场的基本方程变为,(2)磁场的标量位函数,这样,在无源区域内,磁场也成了无旋场,具有位场的性质,因此,象静电场一样,我们可以引入一个标量函数,即标量磁位函数,注意:标量磁位的定义只是在无源区才能应用。,即令,以上所导出的三个静态场的基本方程表明:静态场可以用位函数表示,而且位函数在有源区域均满足泊松方程,在无源区域均满足拉普拉斯方程。因此,静态场的求解问题就变成了如何求解泊松方程和拉普拉斯方程的
7、问题。这两个方程是二阶偏微分方程,针对具体的电磁问题,不可能完全用数学方法求解。在介绍具体的求解方法之前,我们要先介绍几个重要的基本原理,这些原理将成为以后求解方程的理论依据。,5.2 对偶原理,如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。具有同样数学形式的两个方程称为对偶性方程,在对偶性方程中,处于同等地位的量称为对偶量。有了对偶原理后,我们就能把某种场的分析计算结果,直接推广到其对偶的场中,这也是求解电磁场的一种方法。,1、=0区域的静电场与电源外区域的恒定电场的对偶,2、=0区域的静电场与 区域的
8、恒定磁场的对偶,5.3 叠加原理和唯一性定理,在研究具体的工程电磁场问题时,无论是静电场、恒定电场、还是恒定磁场,都需要根据实际工程中给定的边界条件,通过求解泊松方程或拉普拉斯方程,得到标量电位函数或矢量磁位函数。,5.3.1 边界条件的分类,给定位函数的边界条件通常有三类:,第一类边界条件,直接给定整个场域边界上的位函数值,为边界点S的位函数,这类问题称为第一类边界条件。,因为,故上式相当于给定了边界表面的面电荷密度或电场强度的法向分量,这类问题称为第二类边界条件。,第二类边界条件,只给定待求位函数在边界上的法向导数值,第三类边界条件,给定边界上的位函数及其法向导数的线性组合,这是混合边界条
9、件,称为第三类边界条件。,5.3.2 叠加原理,若 和 分别满足拉普拉斯方程,即 和,则 和 的线性组合:必然也满足拉普拉斯方程:式中a、b均为常系数。,5.3.3 唯一性定理,唯一性定理可叙述为:对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。,5.4 镜象法,镜象法是利用一个与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,这个相似的电荷称为镜象电荷,然后通过计算由源电荷和镜象电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜象法。一般可以考虑采用标量位函数来计算这个由电荷所产生的合成电场
10、,这样可以避免复杂的矢量运算。当然,这就需要假设镜象电荷与源电荷共同产生了一个总的电位函数,它既能满足给定的具体边界条件,又在一定区域内满足拉普拉斯方程。那么,根据唯一性定理,所假设的位函数就是该区域上的唯一的电位函数。因此,用镜象法求解静电场问题的关键是寻找合适的镜象电荷,然后再引出位函数并求解,这是分析很多电磁问题的一种有效方法。,镜象法是利用一个与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,这个相似的电荷称为镜象电荷,然后通过计算由源电荷和镜象电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜象法。,5.4.1 点电荷与无限大的平面导
11、体的合成场计算,如图取直角坐标系,使z=0的平面与导体平面重合,并将+q电荷放在z轴上。这时整个电场是静电场,是由电荷q和导体平面上的感应电荷产生的。点电荷q与导体平面之间的电位必须满足下列条件:1、在z=0处,=0,因为无限大的导体平面电位为零;2、在z0的空间里,除了点电荷所在的点外,处处应该满足:,用唯一性定理可以验证,这个假设的电位函数就是我们所要求的合成场。,如果设想把无限大导电平板撤去,整个空间充满同一种介质,并在点电荷q的对称位置上,放一个点电荷-q来代替导电平板上的感应电荷。那么在z0空间里任一点p(x,y,z)的电位就应等于源电荷q与镜象电荷-q所产生的电位之和。这时,p点的
12、电位为,1、若将源点电荷换成线电荷,让线电荷的线与平面平行,由于线电荷可以看成是由无限多个连续分布的点电荷组成的,用镜象法同样可计算出在z0的空间任一点的电位。,推广,2、两相交半无限大导体平面,在角区内的点电荷、线电荷的场也可用镜象法求解。,点电荷对于夹角为垂直的接地两块相连导电平面的镜像:,对于夹角为 的两个相连无限大导电平板间置有点电荷的问题,只要n为整数,在区域内的镜像:,3、无限长通电直导线在一无限大磁介质平面上方在空间中一点P的磁场由电流和镜象电流共同产生。,4、当天线架设得比较低时,通常把地面假设为无限大的理想导电平面,地面的影响将归结为镜象天线所起的作用。,5.4.2 电介质分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息与通信 信息 通信 电磁场 电磁波
链接地址:https://www.31ppt.com/p-5615354.html