7第七章目的基因在宿主中的表达.ppt
《7第七章目的基因在宿主中的表达.ppt》由会员分享,可在线阅读,更多相关《7第七章目的基因在宿主中的表达.ppt(200页珍藏版)》请在三一办公上搜索。
1、第七章 目的基因在宿主中的表达,2011-10-22,1,目的基因在宿主中的表达,外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达 外源基因在高等植物细胞中的表达,2011-10-22,2,目的基因在宿主中的表达,绪:基因表达的关键因素,1.转录起始(关键和限速步骤),转录宿主RNA聚合酶启动子,2011-10-22,3,目的基因在宿主中的表达,2.mRNA的延伸与稳定性,非特异性终止:衰减子,抗终止序列正确终止转录:终止序列mRNA稳定性与Poly(A)尾有关 载体上添加 Poly(A)掺入信号宿主RNase缺失,增强mRNA稳定性,2011-10-22,4,
2、目的基因在宿主中的表达,强化转录终止的必要性,外源基因在强启动子的控制下表达,容易发生转录过头现象,即RNA聚合酶滑过终止子结构继续转录质粒上邻近的DNA序列,形成长短不一的mRNA混合物。,过长转录物的产生在很大程度上会影响外源基因的表达,其原因如下:,转录产物越长,RNA聚合酶转录一分子mRNA所需的时间就相应增加,外源基因本身的转录效率下降。,如果外源基因下游紧接有载体上的其它重要基因或DNA功能区域,如选择性标记基因和复制子结构等,则RNA聚合酶在此处的转录可能干扰质粒的复制及其它生物功能,甚至导致重组质粒的不稳定性。,过长的mRNA往往会产生大量无用的蛋白质,增加工程菌无谓的能量消耗
3、。,更为严重的是,过长的转录物往往不能形成理想的二级结构,从而大大降低外源基因编码产物的翻译效率。,2011-10-22,5,目的基因在宿主中的表达,3mRNA有效翻译,原核翻译AUG起始密码子SD序列:与16SrRNA互补结合位点,该序列至少含有AGGAGG序列中的4个碱基SD序列与ATG之间合适距离3-9bp翻译起始区间内不形成明显二级结构(5)终止密码子:UAA、UAG、UGA,2011-10-22,6,目的基因在宿主中的表达,4外源蛋白的稳定性,融合蛋白分泌蛋白表达系统包涵体表达系统使用蛋白水解酶基因缺陷型受体细胞,2011-10-22,7,目的基因在宿主中的表达,5.目的基因的沉默,
4、1)位置效应 目的基因位于甲基化程度高,转录活性低的异染色质上2)转录水平基因沉默 启动子甲基化和外源基因的异染色质化;目的基因的重复序列可导致自身甲基化3)转录后水平基因沉默 共抑制(cosuppression)是转录后水平的基因沉默,指被整合的外源基因沉默的同时,与其同源的内源DNA的表达也受到抑制。,2011-10-22,8,目的基因在宿主中的表达,一、外源基因在大肠杆菌中的表达,2011-10-22,9,目的基因在宿主中的表达,1.大肠杆菌表达外源基因的优势,全基因组测序,共有4405个开放阅读框,基因克隆表达系统成熟完善,繁殖迅速、培养简单、操作方便、遗传稳定,被美国FDA批准为安全
5、的基因工程受体生物,2011-10-22,10,目的基因在宿主中的表达,2.大肠杆菌表达外源基因的劣势,缺乏对真核生物蛋白质的复性功能,缺乏对真核生物蛋白质的修饰加工系统,内源性蛋白酶降解空间构象不正确的异源蛋白,细胞周质内含有种类繁多的内毒素,2011-10-22,11,目的基因在宿主中的表达,3.外源基因在大肠杆菌中高效表达的理论基础,启动子,终止子,核糖体结合位点,密码子,质粒拷贝数,2011-10-22,12,目的基因在宿主中的表达,3.1 启动子,目的基因,(1)启动子最佳距离的探测,A,E,E,目的基因E,E,A 酶切开,启动子Bal31酶解,2011-10-22,13,目的基因在
6、宿主中的表达,PL,Ptrp,(2)启动子的构建,启动子PrecAPtraAPlacPtac,-35 区序列T T G A C AT T G A T AT A G A C AT T G A C AT T T A C AT T G A C A,-10 区序列G A T A C TT A T A A TT A A T G TT T A A C TT A T A A TT A T A A T,Ptac=3 Ptrp=11 Plac,2011-10-22,14,目的基因在宿主中的表达,(3)启动子的可控性:乳糖操纵子的启动子Plac,野生型的Plac与其控制区Olac偶联在一起,在没有诱导物存在时,整
7、个操纵子处于基底水平表达;诱导物可以使启动子Plac介导的转录大幅提高。,诱导作用,2011-10-22,15,目的基因在宿主中的表达,(3)启动子的可控性:乳糖操纵子的启动子Plac,野生型的Plac上游附近拥有代谢激活因子(CAP)结合区,cAMP激活CAP,cAMP-CAP复合物与DNA结合,改变DNA结构,促进RNA聚合酶和启动子结合,使转录能力增强。葡萄糖代谢使cAMP减少,从而阻遏Plac介导的转录。因此,基因工程中使用的乳糖启动子均为抗葡萄糖代谢阻遏的突变型,即Plac UV5。,cAMP的正调控作用,2011-10-22,16,目的基因在宿主中的表达,(3)启动子的可控性:色氨
8、酸启动子Ptrp的可控性,色氨酸启动子Ptrp受色氨酸-阻遏蛋白复合物的阻遏,转录呈基底状态。在培养系统中去除色氨酸或者加入3-吲哚丙烯酸(IAA),便可有效地解除阻遏抑制作用。在正常的细菌培养体系中,除去色氨酸是困难的,因此基因工程中往往添加IAA诱导Ptrp介导的目基因的表达。,2011-10-22,17,目的基因在宿主中的表达,3.2 终止子,2011-10-22,18,目的基因在宿主中的表达,强终止子的选择与使用 目前外源基因表达质粒中常用的终止子是来自大肠杆菌 rRNA操纵子上的rrnT1T2以及T7噬菌体DNA上的T。对 于一些终止作用较弱的终止子,通常可以采用二聚体终 止子串联的
9、特殊结构,以增强其转录终止作用。终止子、启动子等,可以通过特殊的探针质粒从细菌或 噬菌体基因组DNA中克隆筛选。,3.3 核糖体结合位点RBS,外源基因在大肠杆菌细胞中的高效表达不仅取决于转录启动的频率,而且在很大程度上还与mRNA的翻译起始效率密切相关。大肠杆菌细胞中结构不同的mRNA分子具有不同的翻译效率,它们之间的差别有时可高达数百倍。mRNA翻译的起始效率主要由其5 端的结构序列所决定,称为核糖体结合位点(RBS,Ribosome Binding Site),2011-10-22,19,目的基因在宿主中的表达,(1)核糖体结合位点的结构,大肠杆菌核糖体结合位点包括下列四个特征结构要素:
10、,位于翻译起始密码子上游的6-8个核苷酸序列5 UAAGGAGG 3:即,Shine-Dalgarno(SD)序列,它通过识别大肠杆菌核糖体小亚基中,的16S rRNA 3端区域3 AUUCCUCC 5并与之专一性结合,将,mRNA定位于核糖体上,从而启动翻译。,翻译起始密码子:大肠杆菌绝大部分基因以AUG作为阅读框架的起始位点,但有些基因也使用GUG或UUG作为翻译起始密码子。,SD序列与翻译起始密码子之间的距离及碱基组成,基因编码区5 端若干密码子的碱基序列,2011-10-22,20,目的基因在宿主中的表达,(2)核糖体结合位点对外源基因表达的影响,SD序列的影响:,一般来说,mRNA与
11、核糖体的结合程度越强,翻译的起始效率就越高,而这种结合程度主要取决于SD序列与16S rRNA的碱基互补性,其中以GGAG四个碱基序列尤为重要。对多数基因而言,上述四个碱基中任何一个换成C或T,均会导致翻译效率大幅度降低。,2011-10-22,21,目的基因在宿主中的表达,SD序列与起始密码子之间的序列的影响:,SD序列下游的碱基若为AAAA或UUUU,翻译效率最高;而CCCC或GGGG的翻译效率则分别是最高值的50%和25%。紧邻AUG的前三个碱基成份对翻译起始也有影响,对于大肠杆菌-半乳糖苷酶的mRNA而言,在这个位置上最佳的碱基组合是UAU或CUU,如果用UUC、UCA或AGG取代之,
12、则酶的表达水平低20倍。,2011-10-22,22,目的基因在宿主中的表达,SD序列与起始密码子之间的距离的影响:,SD序列与起始密码子之间的精确距离保证了mRNA在核糖体上定位后,翻译起始密码子AUG正好处于核糖体复合物结构中的P位,这是翻译启动的前提条件。在很多情况下,SD序列位于AUG之前大约七个碱基处,在此间隔中少一个碱基或多一个碱基,均会导致翻译起始效率不同程度的降低。,2011-10-22,23,目的基因在宿主中的表达,起始密码子及其后续若干密码子的影响:,大肠杆菌中的起始tRNA分子可以同时识别AUG、GUG和UUG三种起始密码子,但其识别频率并不相同,通常GUG为AUG的50
13、%而UUG只及AUG的25%。除此之外,从AUG开始的前几个密码子碱基序列也至关重要,至少这一序列不能与mRNA的5 端非编码区形成茎环结构,否则便会严重干扰mRNA在核糖体上的准确定位。,目前广泛用于外源基因表达的大肠杆菌表达型质粒上,均含有与启动子来源相同的核糖体结合位点序列,序列和间隔是最佳的。,2011-10-22,24,目的基因在宿主中的表达,3.4 密码子,(1)生物体对密码子的偏爱性,不同的生物,甚至同种生物不同的蛋白质编码基因,对简并密码子使用频率并不相同,具有一定的偏爱性,其决定因素是:,密码子与反密码子相互作用的自由能:性中等强度规律,如GGG、CCC、GCG、GGC、AA
14、A、UUU、AUA、UAU等使用少;如GUG、CAC、UCG、AGC、ACA、UGU、AUC、UUG等使用多;,细胞内tRNA的含量,生物基因组中的碱基含量:在富含AT的生物(如单链DNA噬菌体X174)基因组中,密码子第三位上的U和A出现的频率较高;而在GC丰富的生物(如链霉菌)基因组中,第三位上含有G或C的简并密码子占90%以上的绝对优势。,2011-10-22,25,目的基因在宿主中的表达,Codon Usage Database,Aspergillus oryzae,Aspergillus niger,Saccharomyces cerevisiae,Escherichia coli,
15、2011-10-22,26,目的基因在宿主中的表达,(2)密码子偏爱性对外源基因表达的影响,由于原核生物和真核生物基因组中密码子的使用频率具有较大程度的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择。一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:,外源基因全合成同步表达相关tRNA编码基因,2011-10-22,27,目的基因在宿主中的表达,外源基因全合成,按照大肠杆菌密码子的偏爱性规律,设计更换外源基因中不适宜的相应简并密码子。重组人胰岛素、干扰素以及生长激素在大肠杆菌中的高效表达均采用了这种方法。,实验技术:密码子
16、优化,http:/genomes.urv.cat/CAIcal/OPTIMIZER,2011-10-22,28,目的基因在宿主中的表达,同步表达相关tRNA编码基因,对于那些含有不和谐密码子种类单一、出现频率较高、而本身分子量又较大的外源基因而言,则选择相关tRNA编码基因同步克隆表达的策略较为有利。例如,在人尿激酶原cDNA的412个密码子中,共含有22个精氨酸密码子,其中7个AGG、2个AGA,而大肠杆菌受体细胞中tRNAAGG和tRNAAGA的丰度较低。为了提高人尿激酶原cDNA在大肠杆菌中的高效表达,将大肠杆菌的这两个tRNA编码基因克隆在另一个高表达的质粒上。由此构建的大肠杆菌双质粒
17、系统有效地解除了受体细胞对外源基因高效表达的制约作用。,2011-10-22,29,目的基因在宿主中的表达,3.5 质粒拷贝数,(1)质粒拷贝数对细菌生长代谢的影响,目前实验室里广泛使用的表达型质粒在每个大肠杆菌细胞中可达数百甚至上千个拷贝,质粒的扩增过程通常发生在受体细胞的对数生长期内,而此时正是细菌生理代谢最旺盛的阶段。质粒分子的过度增殖以及其后目的基因的高效表达势必会影响受体细胞的生长代谢,进而导致重组质粒的不稳定性以及目的基因表达水平的下降。,解决上述难题的一种有效策略是将重组质粒的扩增纳入可控制的轨道。,2011-10-22,30,目的基因在宿主中的表达,(2)质粒扩增时序的控制,p
18、CP3拥有一个温度可诱导型的复制子,在28时,每个细胞的质粒拷贝数为60;在42时,拷贝数迅速增至300-600。这是因为,在42时,受体细胞染色体上的CI基因表达的温度敏感型阻遏蛋白失活,从而使受温度调控的质粒的拷贝数增加。,2011-10-22,31,目的基因在宿主中的表达,4.大肠杆菌基因工程菌的构建策略,包涵体型异源蛋白的表达分泌型异源蛋白的表达融合型异源蛋白的表达寡聚型异源蛋白的表达整合型异源蛋白的表达蛋白酶抗性或缺陷型表达系统的构建,2011-10-22,32,目的基因在宿主中的表达,4.1 包涵体型异源蛋白的表达,(1)包涵体及其性质,在某些生长条件下,大肠杆菌能积累某种特殊的生
19、物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(Inclusion Bodies,IB)。由高效表达质粒构建的大肠杆菌工程菌大量合成非天然性的同源或异源蛋白质,后者在一般情况下以包涵体的形式存在于细菌细胞内。除此之外,包涵体中还含有少量的DNA、RNA和脂多糖等非蛋白分子。,2011-10-22,33,目的基因在宿主中的表达,(2)以包涵体形式表达目的蛋白的优缺点,包涵体表达形式的优点:,能简化外源基因表达产物的分离操作,包涵体的水难溶性及密度远大于其它细胞碎片和细胞成分,菌体经超声波裂解后,直接通过高速离心即可将重组异源蛋白从细菌裂解物中分离出来
20、。,能在一定程度上保持表达产物的结构稳定,在形成包涵体之后,大肠杆菌的蛋白酶降解作用基本上对异源重组蛋白的稳定性已构不成威胁。,2011-10-22,34,目的基因在宿主中的表达,包涵体表达形式的缺点:,以包涵体形式表达的重组蛋白丧失了原有的生物活性,必须通过有效的变性-复性操作,才能回收得到具有正确空间构象的目标蛋白,因此包涵体变性-复性操作的效率对目标产物的收率至关重要。然而,这也是一个技术难题,尤其当目标蛋白分子中的Cys残基数目较高时,体外复性蛋白质的成功率相当低,一般不超过30%。,2011-10-22,35,目的基因在宿主中的表达,(3)以包涵体形式表达目的蛋白的操作,如果未进行特
21、殊设计(如分泌型表达或融合型表达),外源基因在大肠杆菌中表达的蛋白量占细胞总蛋白量20%以上时,表达产物一般倾向于形成包涵体。因此,以包涵体形式表达目的基因操作的关键就是选择高表达的载体。事实上,这种高表达率也是包涵体法的长处所在。,2011-10-22,36,目的基因在宿主中的表达,包涵体的溶解与变性:包涵体的溶解与变性的主要任务是在人工条件下,拆开包涵体内蛋白质中错配的二硫键和次级键,使包涵体溶解并重新进入复性途径。能有效促进包涵体溶解变性的试剂和条件包括:,(4)包涵体的变性-复性操作,清洗剂:SDS、正十二醇肌氨酸。廉价,但影响复性和纯化促溶剂:盐酸胍、尿素。前者昂贵,尿素便宜,但常被
22、自发形成的氰酸盐污染,后者能与多肽链中的氨基反应。混合溶剂:如尿素与醋酸、二甲亚砜等联合使用,溶解力强。极端pH:廉价,但许多蛋白质在极端pH条件下发生修饰反应。,2011-10-22,37,目的基因在宿主中的表达,包涵体的复性与重折叠(refolding):,包涵体的复性与重折叠的主要任务是:将多肽链中被拆开的游离巯基重新折叠;通过次级键的形成使蛋白质复性。,包涵体复性操作的方法包括:一步稀释法:蛋白复性与浓度无关,但集聚与浓度关系很大。分段稀释法:逐步降低变性剂的浓度,防止二次集聚的发生。试剂添加法:精氨酸、甘氨酸、甘油、蔗糖、PEG、Ca 2+。蛋白修饰法:氨基柠檬酸酐酰化,蛋白带负电,
23、抑制集聚。产物隔离法:将变性的蛋白分子固定化,避免其相互碰撞。分子伴侣法:GroEL、GroES、DnaK,固定化,共表达。,2011-10-22,38,目的基因在宿主中的表达,包涵体的复性与重折叠(refolding):二硫键形成在包涵体变性体系中,始终存在着还原剂,使多肽链中的巯基保持还原状态,防止二硫键错配导致严重的集聚。在变性操作结束后,这些游离型的巯基必须重新配对形成二硫键,此时多肽链也重新发生折叠。形成二硫键的方式主要有:化学氧化法(A):需要电子受体,最廉价的电子受体为空气,二硫键形成是随机的,仅适用于那些不含游离半胱氨酸残基的蛋白质的重折叠。二硫键交换(B):需要还原型和氧化型
24、谷胱甘肽(GSH和GSSG),二硫键形成相对特异,因此适用性较广,重折叠效果好。,2011-10-22,39,目的基因在宿主中的表达,4.2 分泌型异源蛋白的表达,在大肠杆菌中表达的异源蛋白按其在细胞中的定位可分为两种形式:即以可溶性或不溶性(包涵体)状态存在于细胞质中;或者通过运输或分泌方式定位于细胞周质,甚至穿过外膜进入培养基中。蛋白产物N端信号肽序列的存在是蛋白质分泌的前提条件。,2011-10-22,40,目的基因在宿主中的表达,(1)以分泌形式表达目的蛋白的优缺点,分泌表达形式的优点:,目的蛋白稳定性高 重组人胰岛素原若分泌到细胞周质中,其稳稳定性大约是在细胞质中的10倍。目的蛋白易
25、于分离,目的蛋白末端完整 相当多的真核生物成熟蛋白N端并不含有甲硫氨酸残基。当这些真核基因在大肠杆菌中表达时,蛋白质N端的甲硫氨酸残基往往不能被切除。如若将外源基因与大肠杆菌的信号肽编码序列重组在一起,一旦分泌型表达,其N端的甲硫氨酸残基便可在信号肽的剪切过程中被有效除去。,2011-10-22,41,目的基因在宿主中的表达,分泌表达形式的缺点:,相对其它生物细胞而言,大肠杆菌的蛋白分泌机制并不健全。外源真核生物基因很难在大肠杆菌中进行分泌型表达,少数外源基因既便能分泌表达,其表达效率通常要比包涵体方式低很多,因此目前用于产业化的异源蛋白分泌型重组大肠杆菌尽管有,但并不普遍。,2011-10-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 目的 基因 宿主 中的 表达
链接地址:https://www.31ppt.com/p-5612549.html