《向量空间》PPT课件.ppt
《《向量空间》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《向量空间》PPT课件.ppt(146页珍藏版)》请在三一办公上搜索。
1、第四章第一节 n维向量,高等代数,定义1,分量全为复数的向量称为复向量.,分量全为实数的向量称为实向量,,一、维向量的概念,例如,二、维向量的表示方法,维向量写成一行,称为行向量,也就是行矩阵,通常用等表示,如:,维向量写成一列,称为列向量,也就是列矩阵,通常用等表示,如:,注意,行向量和列向量总被看作是两个不同的向量;,行向量和列向量都按照矩阵的运算法则进行运算;,当没有明确说明是行向量还是列向量时,都当作列向量.,向量,三、向量空间,空间,叫做 维向量空间,时,维向量没有直观的几何形象,叫做 维向量空间 中的 维超平面,确定飞机的状态,需要以下6个参数:,飞机重心在空间的位置参数P(x,y
2、,z),机身的水平转角,机身的仰角,机翼的转角,所以,确定飞机的状态,需用6维向量,维向量的实际意义,课堂讨论,在日常工作、学习和生活中,有许多问题都需要用向量来进行描述,请同学们举例说明,向量的表示方法:行向量与列向量;,向量空间:解析几何与线性代数中向量的联系与区别、向量空间的概念;,向量在生产实践与科学研究中的广泛应用,四、小结,维向量的概念,实向量、复向量;,若一个本科学生大学阶段共修36门课程,成绩描述了学生的学业水平,把他的学业水平用一个向量来表示,这个向量是几维的?请大家再多举几例,说明向量的实际应用,思考题,如果我们还需要考察其它指标,比如平均成绩、总学分等,维数还将增加,思考
3、题解答,答36维的,结束,第二节 向量组的线性相关性,若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组,例如,一、向量、向量组与矩阵,向量组,,称为矩阵A的行向量组,反之,由有限个向量所组成的向量组可以构成一个矩阵.,线性方程组的向量表示,方程组与增广矩阵的列向量组之间一一对应,定义,线性组合,向量 能由向量组 线性表示,定理1,定义,从而,注意,定义,二、线性相关性的概念,则称向量组 是线性相关的,否则称它线性无关,定理向量组(当 时)线性相关的充分必要条件是 中至少有一个向量可由其余 个向量线性表示,证明,充分性,设 中有一个向量(比如)能由其余向量线性表示.,即有,三、线性
4、相关性的判定,故,因 这 个数不全为0,,故 线性相关.,必要性,设 线性相关,,则有不全为0的数使,因 中至少有一个不为0,,不妨设则有,即 能由其余向量线性表示.,证毕.,线性相关性在线性方程组中的应用,结论,定理2,下面举例说明定理的应用.,证明(略),解,例,解,例,分析,证,定理3,证明,说明,说明,.向量、向量组与矩阵之间的联系,线性方程组的向量表示;线性组合与线性表示的概念;,.线性相关与线性无关的概念;线性相关性在线性方程组中的应用;(重点),.线性相关与线性无关的判定方法:定义,两个定理(难点),四、小结,思考题,证明()、()略,()充分性,必要性,思考题解答,结束,第三节
5、 向量组的秩,定义,一、最大线性无关向量组,定理,二、矩阵与向量组秩的关系,结论,说明,事实上,定理,三、向量组秩的重要结论,推论1,推论2,思考,证一,证二,注意,最大线性无关向量组的概念:最大性、线性无关性,矩阵的秩与向量组的秩的关系:矩阵的秩矩阵列向量组的秩矩阵行向量组的秩,关于向量组秩的一些结论:一个定理、三个推论,求向量组的秩以及最大无关组的方法:将向量组中的向量作为列向量构成一个矩阵,然后进行初等行变换,四、小结,比较教材例7的证法一、二、三,并总结这类题的证法,思考题,证法一根据向量组等价的定义,寻找两向量组相互线性表示的系数矩阵;,思考题解答,证法二利用“经初等列变换,矩阵的列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量空间 向量 空间 PPT 课件
链接地址:https://www.31ppt.com/p-5580166.html