《spss回归分析》PPT课件.ppt
《《spss回归分析》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《spss回归分析》PPT课件.ppt(21页珍藏版)》请在三一办公上搜索。
1、第10章 回归分析,介绍:1、回归分析的概念和模型 2、回归分析的过程,回归分析的概念,寻求有关联(相关)的变量之间的关系主要内容:从一组样本数据出发,确定这些变量间的定量关系式对这些关系式的可信度进行各种统计检验从影响某一变量的诸多变量中,判断哪些变量的影响显著,哪些不显著利用求得的关系式进行预测和控制,回归分析的模型,按是否线性分:线性回归模型和非线性回归模型按自变量个数分:简单的一元回归,多元回归基本的步骤:利用SPSS得到模型关系式,是否是我们所要的,要看回归方程的显著性检验(F检验)和回归系数b的显著性检验(T检验),还要看拟合程度R2(相关系数的平方,一元回归用R Square,多
2、元回归用Adjusted R Square),回归分析的过程,在回归过程中包括:Liner:线性回归Curve Estimation:曲线估计Binary Logistic:二分变量逻辑回归Multinomial Logistic:多分变量逻辑回归Ordinal 序回归Probit:概率单位回归Nonlinear:非线性回归Weight Estimation:加权估计2-Stage Least squares:二段最小平方法Optimal Scaling 最优编码回归我们只讲前面3个简单的(一般教科书的讲法),10.1 线性回归(Liner),一元线性回归方程:y=a+bxa称为截距b为回归直
3、线的斜率用R2判定系数判定一个线性回归直线的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例)多元线性回归方程:y=b0+b1x1+b2x2+bnxnb0为常数项b1、b2、bn称为y对应于x1、x2、xn的偏回归系数用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例)一元线性回归模型的确定:一般先做散点图(Graphs-Scatter-Simple),以便进行简单地观测(如:Salary与Salbegin的关系)若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线性分布,可建立其它方程模型,并比较R2(-1)来确
4、定一种最佳方程式(曲线估计)多元线性回归一般采用逐步回归方法-Stepwise,逐步回归方法的基本思想,对全部的自变量x1,x2,.,xp,按它们对Y贡献的大小进行比较,并通过F检验法,选择偏回归平方和显著的变量进入回归方程,每一步只引入一个变量,同时建立一个偏回归方程。当一个变量被引入后,对原已引入回归方程的变量,逐个检验他们的偏回归平方和。如果由于引入新的变量而使得已进入方程的变量变为不显著时,则及时从偏回归方程中剔除。在引入了两个自变量以后,便开始考虑是否有需要剔除的变量。只有当回归方程中的所有自变量对Y都有显著影响而不需要剔除时,在考虑从未选入方程的自变量中,挑选对Y有显著影响的新的变
5、量进入方程。不论引入还是剔除一个变量都称为一步。不断重复这一过程,直至无法剔除已引入的变量,也无法再引入新的自变量时,逐步回归过程结束。,10.1.6 线性回归分析实例p240,实例:P240Data07-03 建立一个以初始工资Salbegin、工作经验prevexp、工作时间jobtime、工作种类jobcat、受教育年限edcu等为自变量,当前工资Salary为因变量的回归模型。先做数据散点图,观测因变量Salary与自变量Salbegin之间关系是否有线性特点Graphs-Scatter-SimpleX Axis:SalbeginY Axis:Salary若散点图的趋势大概呈线性关系,
6、可以建立线性回归模型Analyze-Regression-LinearDependent:SalaryIndependents:Salbegin,prevexp,jobtime,jobcat,edcu等变量Method:Stepwise比较有用的结果:拟合程度Adjusted R2:越接近1拟合程度越好回归方程的显著性检验Sig回归系数表Coefficients的Model最后一个中的回归系数B和显著性检验Sig得模型:Salary=-15038.6+1.37Salbegin+5859.59jobcat-19.55prevexp+154.698jobtime+539.64edcu,10.2 曲
7、线估计(Curve Estimation),对于一元回归,若散点图的趋势不呈线性分布,可以利用曲线估计方便地进行线性拟合(liner)、二次拟合(Quadratic)、三次拟合(Cubic)等。采用哪种拟合方式主要取决于各种拟合模型对数据的充分描述(看修正Adjusted R2-1),10.2.3 曲线估计(Curve Estimation)分析实例,实例P247 Data11-01:有关汽车数据,看mpg(每加仑汽油行驶里程)与weight(车重)的关系先做散点图(Graphs-Scatter-Simple):weight(X)、mpg(Y),看每加仑汽油行驶里程数mpg(Y)随着汽车自重w
8、eight(X)的增加而减少的关系,也发现是曲线关系建立若干曲线模型(可试着选用所有模型Models)Analyze-Regression-Curve EstimationDependent:mpgIndependent:weightModels:全选(除了最后一个逻辑回归)选Plot models:输出模型图形比较有用的结果:各种模型的Adjusted R2,并比较哪个大,结果是指数模型Compound的Adjusted R2=0.70678最好(拟合情况可见图形窗口),结果方程为:mpg=60.15*0.999664weight说明:Growth和Exponential的结果也相同,也一样
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- spss回归分析 spss 回归 分析 PPT 课件
链接地址:https://www.31ppt.com/p-5577180.html