《磨损及磨损理论》PPT课件.ppt
《《磨损及磨损理论》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《磨损及磨损理论》PPT课件.ppt(83页珍藏版)》请在三一办公上搜索。
1、磨损及磨损理论,一、概述1、磨损定义:相互接触的物体在相对运动中,表层材料不断损失、转移或产生残余变形的现象称为磨损,它是伴随着摩擦而产生的必然结果。有些磨损是有益的,如“研磨”,可使零件表面粗糙度减小,使刀刃变得锋利。但是,据统计,约有80%左右的机械零件是由于磨损而报废或失效。磨损不仅消耗材料,浪费能源,并直接影响到机器的寿命和可靠性。固此,对磨损的研究引起了人们的极大关注。,2、磨损研究的主要内容:(1)主要磨损类型的发生条件、特征和变化规律;(2)磨损的影响因素,包括摩擦副材料、表面形态、润滑状况、环境条件,以及滑动速度、载荷、工作温度等工况参数;(3)磨损的模型与磨损计算;(4)提高
2、材料耐磨性的措施;(5)磨损研究的测试技术与实验分析方法。,3、磨损过程零件的正常磨损过程大致可分为三个阶段:跑合阶段;:稳定磨损阶段;:剧烈磨损阶段,:跑合阶段出现在摩擦副的初始运动阶段,由于表面存在粗糙度,微凸体接触面积小,接触应力大,磨损速度快。在一定载荷作用下,摩擦表面逐渐磨平,实际接触面积逐渐增大,磨损速度逐渐减慢,如图所示。,稳定磨损阶段:出现在摩擦副的正常运行阶段。经过跑合,摩擦表面加工硬化,微观几何形状改变,实际接触面积增大,压强降低,从而建立了弹性接触的条件,这时磨损已经稳定下来,如图所示,磨损量随时间增大缓慢增大。,剧烈磨损阶段:由于摩擦条件发生较大的变化(如温度的急剧增高
3、,金属组织的变化等),磨损速度急剧增加。这时机械效率下降,精度降低,出现异常的噪音及振动,最后导致零件完全失效。,*从磨损过程的变化来看,为了提高机器零件的使用寿命,应尽量延长“稳定磨损阶段”。,二、磨损的分类,1、粘着磨损,(1)定义当摩擦副相对滑动时,由于粘着效应所形成的结点发生剪切断裂,接触表面的材料从一个表面转移到另一个表面的现象称为粘着磨损。,(2)粘着磨损机理当摩擦副接触时,接触首先发生在少数几个独立的微凸体上。因此,在一定的法向载荷作用下,微凸体的局部压力就可能超过材料的屈服压力而发生塑性变形,继而使两摩擦表面产生粘着;此后,在相对滑动过程中,如果粘着点的剪切发生在界面,则磨损轻
4、微;如果剪切发生在界面以下,则材料就会从一个表面转移到另外一表面,继续滑动,一部分转移的材料分离,从而形成游离磨粒。,*接触-塑性变形-粘着-剪断粘着点-材料转移-再粘着,循环不断进行,构成粘着磨损过程。,(3)四种典型的粘着磨损,根据粘着点的强度和破坏位置不同,粘着磨损有几种不同的形式,从轻微磨损到破坏性严重的胶合磨损。它们的磨损形式、摩擦系数和磨损度虽然不同,但共同的特征是:出现材料迁移,以及沿滑动方向形成程度不同的划痕。a.轻微磨损 粘着强度比摩擦副的两金属基体强度低时,剪切发生在粘着结合面上,表面转移的材料较轻微。此时虽然摩擦系数增大,但是磨损却很小,材料迁移也不显著。通常在金属表面具
5、有氧化膜、硫化膜或其他涂层时发生轻微粘着摩损。,b.涂抹 粘着强度大于摩擦副中较软金属的强度,小于较硬金属的强度。剪切破坏发生在离粘着结合面不远的较软金属浅层内,软金属涂抹(粘附)在硬金属表面上。这种模式的摩擦系数与轻微磨损差不多,但磨损程度加剧。c.擦伤 粘着强度比摩擦副的两基体金属的强度都高。剪切主要发生在软金属的亚表层内,有时也发生在硬金属的亚表层内,转移到硬金属上的粘着物又刮削软金属表面,使软金属表面出现划痕,所以擦伤主要发生在软金属表层,硬金属表面也偶有划伤。,d.咬合如果粘着强度比两金属基体的强度高得多,而且粘着点面积较大时,剪切破坏发生在一个或两个金属表层深的地方。此时表面将沿着
6、滑动方向呈现明显的撕脱,出现严重磨损。如果滑动继续进行,粘着范围将很快增大,摩擦产生的热量使表面温度剧增,极易出现局部熔焊,使摩擦副之间咬死而不能相对滑动。这种破坏性很强的磨损形式,应力求避免。,(4)简单粘着磨损计算(Archard模型),上图为粘着磨损模型,假设摩擦副的一方为较硬的材料,摩擦副另一方为较软的材料;法向载荷W由n个半径为a的相同微凸体承受。,则当材料产生塑性变形时,法向载荷W与较软材料的屈服极限s之间的关系:(1)当摩擦副产生相对滑动,且滑动时每个微凸体上产生的磨屑为半球形,其体积为(2/3)a3,则单位滑动距离的总磨损量(即磨损率,通常用于判断材料磨损的快慢程度)为:,(2
7、),由(1)和(2)式,可得:,(3),式(3)是假设了各个微凸体在接触时均产生一个磨粒而导出。如果考虑到微凸体相互产生磨粒的概率数K和滑动距离L,则接触表面的粘着磨损量表达式为:,(3),(4),由(4)式可得粘着磨损的三个定律:材料磨损量与滑动距离成正比:适用于多种条件材料磨损量与法向载荷成正比:适用于有限载荷范围材料磨损量与较软材料的屈服极限y(或硬度H)成反比,由于对于弹性材料sH/3,H为布氏硬度值,则式(4)可变为:,式中K为粘着磨损系数,右图为钢制销钉在钢制圆盘上滑动摩擦时的结果。图中示出钢的磨损系数随表观压力的变化曲线。纵坐标为K/H,代表单位载荷、单位滑动距离的磨损量,横坐标
8、代表平均接触压力。,当压力值小于片H/3时,磨损率小而且保持不变(即K保持常数);但当压力值超过H/3时,磨损量急剧增大(K值急剧增大),这意味着在这样高的载荷作用下会发生大面积的粘着焊连。对其他金属也有类似的情况,只是K开始增加时的平均压力值通常比H/3稍低而已。在压力值为H/3作用下,各个微凸体上的塑性变形区开始发生相互影响。当压力值增加到H/3以上时,整个表面变成塑性流动区,因而实际接触面积不再与载荷成正比,出现剧烈的粘着磨损,摩擦表面严重破坏。,由于式中的K代表微凸体中产生磨粒的概率,即粘着磨损系数因此,K值必须按不同的滑动材料组合和不同的摩擦条件求得。右表给出了不同工况和摩擦副配对时
9、的磨损系数K值。,(5)粘着磨损的影响因素,摩擦副材料性质的影响a.脆性材料比塑性材料的抗粘着能力高。塑性材料粘着点的破坏以塑性流动为主,发生在表层深处,磨损颗粒大。脆性材料粘着点的破坏主要是剥落,发生在表层浅处,磨损颗粒小,呈磨屑状,磨屑容易脱落,不堆积在表面上。,b.相同金属或冶金相溶性大的材料摩擦副(相同金属或晶格类型、电子密度、电化学性能相似的金属)易发生粘着磨损。异种金属或冶金相溶性小的材料摩擦副抗粘着磨损能力较高。金属与非金属摩擦副抗粘着磨损能力高于异种金属摩擦副。应避免使用同种金属或冶金相溶性大的金属组成摩擦副。,冶金的相(互)溶性:两种金属能在固态互相溶解的性能。摩擦的相(互)
10、溶性:一定配对材料在发生摩擦和磨损时抵抗粘着的性能。一般,冶金相溶性好的金属摩擦副,其摩擦相溶性就差,相同金属摩擦副,摩擦互溶性最差。,c.材料的组织结构和表面处理金属的组织结构对粘着磨损也有影响,多相金属比单相金属的抗粘着磨损能力高;金属中化合物相比单相固溶体的粘着倾向小。通过表面处理技术在金属表面生成硫化物、磷化物或氯化物等薄膜可以减少粘着效应,同时表面膜限制了破坏深度,提高抗粘着磨损的能力。d.元素周期表中的B族元素,如锗、银、镉、铟、锡、锑、铊、铅、铋与铁的冶金相容性差,抗粘着磨损性能好。而铁与A族元素组成的摩擦副粘着倾向大。,e.材料的硬度硬度高的金属比硬度低的金属抗粘着能力强,因为
11、表面接触应力大于较软金属硬度的1/3时,很多金属将由轻微磨损转变为严重的粘着磨损。,载荷的影响粘着磨损一般随法向载荷增加到某一临界值后而急剧增加,如图所示,K/H的比值实际上是材料硬度与许用压力的关系。当载荷值超过材料硬度值的1/3时,磨损急剧增加,严重时咬死。因此设计中选择的许用压力必须低于材料硬度值的1/3。,速度的影响在压力一定的情况下,粘着磨损随滑动速度的增加而增加,在达到某一极大值后,又随着滑动速度的增加而减少。下图为摩擦速度不太高的范围内,钢铁材料的磨损随摩擦速度、接触压力的变化规律。,随着滑动速度的变化,磨损类型由一种形式转变为另一种形式。如图(a)所示,当摩擦速度很低时,主要是
12、氧化磨损,出现Fe2O3的磨屑,磨损量很小。随速度的增大,氧化膜破裂,金属的直接接触,转化为粘着磨损,磨损量显著增大。滑动速度再高,摩擦温度上升,有利于氧化膜形成,又转为氧化磨损,磨屑为Fe3O4,磨损量又减小。如摩擦速度再增大,将再次转化为粘着磨损,磨损量又开始增加。,图(b)是滑动速度保持一定而改变载荷所得到的钢对钢磨损实验结果。载荷小产生氧化磨损,磨屑主要是Fe2O3;当载荷达到W0后,磨屑是FeO、Fe2O3 和Fe3O4的混合物。载荷超过Wc以后,便转入危害性的粘着磨损。,表面温度的影响表层温度特性对于摩擦表面的相互作用和破坏影响很大。表面温度升高可使润滑膜失效,使材料硬度下降,摩擦
13、表面容易产生粘着磨损。,上图为温度对胶合磨损的影响,可以看出,当表面温度达到临界值(约80)时,磨损量和摩擦系数都急剧增加。影响温度特性的主要因素是表面压力p和滑动速度v,其中速度的影响更大,因此限制pv值是减少粘着磨损和防止胶合发生的有效方法。,润滑油、润滑脂的影响 在润滑油、润滑脂中加人油性或极压添加剂能提高润滑油膜吸附能力及油膜强度,能成倍地提高抗粘着磨损能力。油性添加剂是由极性非常强的分子组成,在常温条件下,吸附在金属表面上形成边界润滑膜,防止金属表面的直接接触,保持摩擦面的良好润滑状态。极压添加剂是在高温条件下,分解出活性元素与金属表面起化学反应,生成一种低剪切强度的金属化合物薄膜,
14、防止金属因干摩擦或边界摩擦条件下而引起的粘着现象。,2、磨粒(磨料)磨损,(1)定义 外界硬颗粒或者对磨表面上的硬突起物或粗糙峰在摩擦过程中引起表面材料脱落的现象,称为磨粒磨损。例如:掘土机铲齿、犁耙、球磨机衬板等的磨损都是典型的磨粒磨损。机床导轨面由于切屑的存在也会引起磨粒磨损。水轮机叶片和船舶螺旋桨等与含泥沙的水之间的侵蚀磨损也属于磨粒磨损。,(2)磨粒磨损分类及其磨损特征,磨料磨损根据表面磨损的破坏形式,大体可以分为下列几种类型:按摩擦表面的数目分为:两体磨料磨损种和三体磨料磨损,a.二体磨粒磨损磨粒沿一个固体表面相对运动产生的磨损。当磨粒运动方向与固体表面接近平行时,磨粒与表面接触处的
15、应力较低,固体表面产生擦伤或微小的犁沟痕迹。如果磨粒运动方向与固体表面接近垂直时,此时,磨粒与表面产生高应力碰撞,在表面上磨出较深的沟槽,并有大颗粒材料从表面脱落。在一对摩擦副中,硬表面的粗糙峰对软表面起着磨粒作用,这也是一种二体磨损,它通常是低应力磨粒磨损。,b.三体磨粒磨损外界磨粒移动于两摩擦表面之间,类似于研磨作用,称为三体磨粒磨损。通常三体磨损的磨粒与金属表面产生极高的接触应力,往往超过磨粒的压溃强度。这种压应力使韧性金属的摩擦表面产生塑性变形或疲劳,而脆性金属表面则发生脆裂或剥落。,凿削式磨粒磨损这类磨损的特征是冲击力大,磨料以很大的冲击力切入金属表面,因此工件受到很高的应力,造成表
16、面宏观变形,并可以从摩擦表面凿削下金属大颗粒,在被磨损表面有较深的沟槽和压痕。如挖掘机的斗齿、矿石破碎机锤头等零件表面的磨损即属于此种磨损形式。,按摩擦表面所受的应力和冲击的大小分为凿削式磨料磨损、高应力碾碎式磨料磨损和低应力擦伤式磨料磨损。,b.高应力碾碎式磨粒磨损这类磨损的特点是应力高,磨料所受的应力超过磨料的压碎强度,当磨料夹在两摩擦表面之间时,局部产生很高的接触应力,这种压应力使韧性金属的摩擦表面产生塑性变形或疲劳,而脆性金属表面则发生脆裂或剥落。同时磨料不断被碾碎,被碾碎的磨料颗粒呈多角形,擦伤金属,在摩擦表面留下沟槽和凹坑。如矿石粉碎机的颚板、轧碎机滚筒等表面的破坏。,c.低应力擦
17、伤式磨粒磨损这种磨损的特征是应力低,磨料作用于摩擦表面的应力不超过它本身的压溃强度。材料表面有擦伤并有微小的切削痕迹。如犁铧、泥沙泵叶轮等。,(3)磨粒磨损机理,关于材料磨粒磨损主要有以下几个假设:微观切削假说:法向载荷将磨料压入摩擦表面,滑动时磨料对表面产生切削作用,材料脱离表面形成磨屑。压痕破坏假说(擦痕假说):磨料在载荷作用下压入摩擦表面而产生压痕,滑动时使表面产生严重的塑性变形,压痕两侧材料受到损伤,因而易从表面挤出或剥落。疲劳破坏假说:摩擦表面在磨料产生的循环接触应力作用下,表面材料开始出现疲劳裂纹并逐渐扩大,最后从表面剥离。,(4)磨粒磨损模型:简单的磨粒磨损计算方法是根据微量切削
18、假说得出,下图为磨粒磨损模型。可以将磨粒看做是具有锥形的硬质颗粒在软材料上滑动,犁出一条沟。,假设磨粒为形状相同的圆锥体,半角为,锥底直径为r(即犁出的沟槽宽度),载荷为W,压入深度h,滑动距离为L,屈服极限s。在垂直方向的投影面积为r2,滑动时只有半个锥面(前进方向的锥面)承受载荷,共有n个微凸体,则所受的法向载荷为:,将犁去的体积作为磨损量,其水平方向的投影面积为一个三角形,单位滑动距离的磨损量(磨损率)为Q0=nhr,因为r=htan,因此:,(1),如果考虑到微凸体相互作用产生磨粒的概率数K和滑动距离L,并且代人材料的硬度H=3s,则接触表面的磨损量表达式为:,式中Ks为磨粒磨损系数,
19、是几何因素2/tan 和概率常数K的乘积,Ks与磨粒硬度、形状和起切削作用的磨粒数量等因素有关。应当指出,上述分析忽略了许多实际因素,例如磨粒的分布情况、材料弹性变形和滑动前方材料堆积产生的接触面积变化等等,因此式(2)近似地适用于二体磨粒磨损。在三体磨损中,一部分磨粒的运动是沿表面滚动,它们不产生切削作用,因此Ks值明显减小。由公式(2)可看出:粘着磨损定律也同样适用于磨粒磨损。,(2),相对耐磨度:标准试样磨损量和被评价试验试样磨损量之比,其值越大,材料耐磨性越好。,材料硬度的影响:,(5)影响磨粒磨损的因素:,如图(a)所示,对于纯金属和退火钢,其耐磨性与硬度成正比。,图(b)是正常淬火
20、后,不同温度回火的几种钢的磨粒磨损试验结果。淬火回火钢的耐磨性随着硬度的增加而增大,但是与退火钢相比,耐磨性的增大速度缓慢些,即淬火回火可以提高钢的硬度和耐磨性,但效果微弱。由此得出:金属的耐磨性不仅取决于其硬度,还取决于它的成分和组织结构。,相同硬度下,钢中的碳含量及碳化物形成元素含量越高,其耐磨性也越强。,右图为表面冷作硬化对低应力磨粒磨损试验时的耐磨性的影响。由图可见,冷作硬化后,表层硬度的提高并没有使耐磨性增加,甚至有下降的趋势。所以在低应力磨损时,冷作硬化不能提高表面的耐磨性(只要在塑性变形的过程中组织未发生变化)。,加工硬化的影响:,应提出的是,零件实际使用条件与上述试验条件相近时
21、,以上结论才是适用的。如果零件在更复杂的条件下工作,如除了磨粒磨损之外,可能还有其他因素起作用,这时就不能简单套用上述结论。例如,表面层的机械冷作硬化(喷丸处理、滚压强化等)是提高零件疲劳强度的方法,由于提高了材料的表面硬度,这对于以粘着磨损为主的磨损,也能提高摩擦副的相对耐磨性。以上所述是指冷作硬化对低应力磨粒磨损时的耐磨性的影响。,对于高应力磨粒磨损曾用球磨机钢球进行了试验,试验表明,材料在受高应力冲击载荷下,表面会受到加工硬化,加工硬化后的硬度愈高,其耐磨抗力也愈高。高锰钢的耐磨性也可说明这个问题。此钢淬火后为软而韧的奥氏体组织,当受低应力磨损时,它的耐磨性不好,而在高应力磨损的场合,它
22、具有特别高的耐磨性。这是由于奥氏体在塑性变形时其加工硬化率很高,同时还因为其转变为很硬的马氏体。生产实践证明,高锰钢用作碎石机锤头可呈现很好的耐磨性。,综合和所述,提高钢材硬度的方法有改善合金成分、热处理或冷作硬化等三种。而材料抗磨粒磨损的能力与硬化方法有关,所以必须根据各种提高硬度的方法来考虑耐磨性与硬度的关系。,相对硬度影响:磨粒磨损取决于磨料硬度H0与试件材料硬度H比值,如图所示的三种不同的磨损状态::当磨料硬度低于试件材料硬度,即H0 0.7H时,轻微磨,损阶段。:当磨料硬度超过试件材料硬度后,即0.7H H0 1.3H,磨损量随磨料硬度迅速增大,过渡磨损阶段。,:若磨料硬度远高于材料
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 磨损及磨损理论 磨损 理论 PPT 课件
链接地址:https://www.31ppt.com/p-5562947.html