《电磁场的基本规律》PPT课件.ppt
《《电磁场的基本规律》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《电磁场的基本规律》PPT课件.ppt(151页珍藏版)》请在三一办公上搜索。
1、1,第2章 电磁场的基本规律,2,2.1 电荷守恒定律2.2 真空中静电场的基本规律2.3 真空中恒定磁场的基本规律2.4 媒质的电磁特性2.5 电磁感应定律和位移电流2.6 麦克斯韦方程组2.7 电磁场的边界条件,本章讨论内容,3,2.1 电荷守恒定律,电磁场物理模型中的基本物理量可分为源量和场量两大类。,源量为电荷 和电流,分别用来描述产生电磁效应的两类场源。电荷是产生电场的源,电流是产生磁场的源。,4,本节内容 2.1.1 电荷与电荷密度 2.1.2 电流与电流密度 2.1.3 电荷守恒定律,5,电荷是物质基本属性之一。1897年英国科学家汤姆逊()在实验中发现了电子。1907 1913
2、年间,美国科学家密立根()通过油滴实验,精确测定电子电荷的量值为 e=1.602 177 3310-19(单位:C)确认了电荷的量子化概念。换句话说,e 是最小的电荷,而任何带电粒子所带电荷都是e 的整数倍。,宏观分析时,电荷常是数以亿计的电子电荷e的集合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。,2.1.1 电荷与电荷密度,6,1.电荷体密度,单位:C/m3(库/米3),根据电荷密度的定义,如果已知某空间区域V 中的电荷体密度,则区域V 中的总电荷q为,电荷连续分布于体积V 内,用电荷体密度来描述其分布,理想化实际带电系统的电荷分布形态分为四种形式:点电荷、体分布电荷、面分布
3、电荷、线分布电荷,7,若电荷分布在薄层上,当仅考虑薄层外、距薄层的距离要比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。面分布的电荷可用电荷面密度表示。,2.电荷面密度,单位:C/m2(库/米2),如果已知某空间曲面S 上的电荷面密度,则该曲面上的总电荷q 为,8,若电荷分布在细线上,当仅考虑细线外、距细线的距离要比细线的直径大得多处的电场,而不分析和计算线内的电场时,可将线的直径忽略,认为电荷是线分布。线分布的电荷可用电荷线密度表示。,3.电荷线密度,如果已知某空间曲线上的电荷线密度,则该曲线上的总电荷q 为,单位:C/m(库/米),9,对
4、于总电荷为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电荷为 q 的点电荷。,点电荷的电荷密度表示,4.点电荷,将电荷区域看作是一个没有几何大小的点。,10,电流与电流密度,说明:电流通常是时间的函数,不随时间变化的电流称为恒定 电流,用I 表示。,存在可以自由移动的电荷;存在电场。,单位:A(安),电流方向:正电荷的流动方向,电流 电荷的定向运动而形成,用i 表示,其大小定义为:单位时间内通过某一横截面S 的电荷量,即,
5、形成电流的条件:,11,电荷在某一体积内定向运动所形成的电流称为体电流,用电流密度矢量 来描述。,单位:A/m2(安/米2)。,一般情况下,在空间不同的点,电流的大小和方向往往是不同的。在电磁理论中,常用体电流、面电流和线电流来描述电流的分别状态。,1.体电流,流过任意曲面S 的电流为,12,2.面电流,电荷在一个厚度可以忽略的薄层内定向运动所形成的电流称为面电流,用面电流密度矢量 来描述其分布,单位:A/m(安/米)。,通过薄导体层上任意有向曲线 的电流为,2005-1-25,第一章 电磁场的数学物理基础,13,14,2.1.3 电荷守恒定律(电流连续性方程),电荷守恒定律:电荷既不能被创造
6、,也不能被消灭,只能从物体 的一部分转移到另一部分,或者从一个物体转移 到另一个物体。,电流连续性方程,积分形式,微分形式,流出闭曲面S 的电流等于体积V 内单位时间所减少的电荷量,恒定电流的连续性方程,恒定电流是无源场,电流线是连续的闭合曲线,既无起点也无终点,电荷守恒定律是电磁现象中的基本定律之一。,*穿出闭合面的通量=0 有入有出,动态平衡*恒定电流场为无散度场,15,2.2 真空中静电场的基本规律,静电场:由静止电荷产生的电场。,重要特征:对位于电场中的电荷有电场力作用。,本节内容 2.2.1 库仑定律 电场强度 2.2.2 静电场的散度与旋度,16,1.库仑(Coulomb)定律(1
7、785年),真空中静止点电荷 q1 对 q2 的作用力:,,满足牛顿第三定律。,大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;,2.2.1 库仑定律 电场强度,方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;,17,电场力服从叠加定理,真空中的N个点电荷(分别位于)对点电荷(位于)的作用力为,等于各点电荷对该电荷电场力的合力。,18,2.电场强度,空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即,根据上述定义,真空中静止点电荷q 激发的电场为,描述电场分布的基本物理量,电场强度矢量,试验正电荷,2005-1-25,第一章 电磁场的数学物理基础,
8、19,真空中电场强度的计算公式,直接根据库仑定律,有:,2005-1-25,第一章 电磁场的数学物理基础,20,库仑定律的重要结论:,点电荷周围的电场强度(1)与距离平方成反比;(2)与源点的电荷量成正比;(3)源场满足叠加原理。,如果电荷是连续分布呢?,21,小体积元中的电荷产生的电场,22,3.几种典型电荷分布的电场强度,(无限长),(有限长),当导线变为无限长时:q1=0,q2=p,23,电偶极矩,电偶极子是由相距很近、带等值异号电量的两个点电荷组成的电荷系统,其远区电场强度为,2005-1-25,第一章 电磁场的数学物理基础,24,电偶极子是由相距非常近的正负两个点电荷组成的电荷系。,
9、电偶极子的电场,解:电场的叠加原理,电偶极子的电场就是两个点电荷产生的场的叠加。1、求电场,2005-1-25,第一章 电磁场的数学物理基础,25,根据余弦定理,2005-1-25,第一章 电磁场的数学物理基础,26,球坐标系中,2005-1-25,第一章 电磁场的数学物理基础,27,通常电偶极矩定义为:,2005-1-25,第一章 电磁场的数学物理基础,28,通常电偶极矩定义为,29,例 计算均匀带电的环形薄圆盘轴线上任意点的电场强度。,解:如图所示,环形薄圆盘的内半径为a、外半径为b,电荷面密度为。在环形薄圆盘上取面积元,其位置矢量为,它所带的电量为。而薄圆盘轴线上的场点 的位置矢量为,因
10、此有,故,由于,2005-1-25,第一章 电磁场的数学物理基础,30,立体角 在半径为R的球面上取面元,与球心构成的锥体。定义锥体对球心所张的立体角:(球面度sr):,2.2.2 静电场的散度与旋度,1.静电场散度与高斯定理,2005-1-25,第一章 电磁场的数学物理基础,31,整个球面对球心所张的立体角任意曲面对一点所张的立体角,与是否球面无关,2005-1-25,第一章 电磁场的数学物理基础,32,立体角 特点:a.与半径R无关,b.闭合面的立体角,33,高斯定理描述通过一个闭合面电场强度通量与闭合面内电荷间关系,点电荷的电场穿过任意闭曲面S的通量。,因此对电荷系或分部电荷,Q为闭合面
11、内的总电荷,S为高斯面,34,曲面上的电场强度是由空间所有电荷产生的,并不是与曲面外的电荷无关,而是外部电荷在闭合曲面上产生的电场强度的通量为零。,当闭合曲面内的电荷是密度为的体分布电荷,则上式可写为,因为,所以有,静电场的高斯定理(积分形式),35,由体积V的任意性有,静电场的散度(微分形式),高斯定理表明:静电场是有源场,电力线起始于正电荷,终止 于负电荷。,静电场的散度(微分形式),静电场的高斯定理(积分形式),静电场的基本方程之一,2005-1-25,第一章 电磁场的数学物理基础,36,a.在点电荷的电场中任取一条连接AB两点的曲线,b.若曲线闭合,2.静电场旋度与环路定理,2005-
12、1-25,第一章 电磁场的数学物理基础,37,静电系统守恒定理证明c.微分形式 由斯托克斯定理,38,环路定理表明:静电场是无旋场,是保守场,电场力做功与路径 无关。,静电场的旋度(微分形式),静电场的环路定理(积分形式),静电场的另一个基本方程,39,在电场分布具有一定对称性的情况下,可以利用高斯定理计算电场强度。,3.利用高斯定理计算电场强度,具有以下几种对称性的场可用高斯定理求解:,球对称分布:包括均匀带电的球面,球体和多层同心球壳等。,带电球壳,多层同心球壳,40,无限大平面电荷:如无限大的均匀带电平面、平板等。,轴对称分布:如无限长均匀带电的直线,圆柱面,圆柱体等。,41,例 求真空
13、中均匀带电球体的场强分布。已知球体半径为a,电 荷密度为 0。,解:(1)球外某点的场强,(2)求球体内一点的场强,由,由,42,2.3 真空中恒定磁场的基本规律,本节内容 2.3.1 安培力定律 磁感应强度 2.3.2 恒定磁场的散度与旋度,43,1.安培力定律,安培对电流的磁效应进行了大量的实验研究,在 1821 1825年之间,设计并完成了电流相互作用的精巧实验,得到了电流相互作用力公式,称为安培力定律。,实验表明,真空中的载流回路 C1 对载流回路 C2 的作用力,载流回路 C2 对载流回路 C1 的作用力,2.3.1 安培力定律 磁感应强度,44,2.磁感应强度,电流在其周围空间中产
14、生磁场,描述磁场分布的基本物理量是磁感应强度,单位为T(特斯拉)。,磁场的重要特征是对场中的电流有磁场力作用,载流回路C1对载流回路 C2 的作用力是回路 C1中的电流 I1 产生的磁场对回路 C2中的电流 I2 的作用力。,根据安培力定律,有,其中,45,任意电流回路 C 产生的磁感应强度,电流元 产生的磁感应强度,体电流产生的磁感应强度,面电流产生的磁感应强度,46,3.几种典型电流分布的磁感应强度,载流直线段的磁感应强度:,载流圆环轴线上的磁感应强度:,(有限长),(无限长),47,例 计算线电流圆环轴线上任一点的磁感应强度。,轴线上任一点P(0,0,z)的磁感应强度为,48,可见,线电
15、流圆环轴线上的磁感应强度只有轴向分量,这是因为圆环上各对称点处的电流元在场点P产生的磁感应强度的径向分量相互抵消。,当场点P 远离圆环,即z a 时,因,故,由于,所以,在圆环的中心点上,z=0,磁感应强度最大,即,2005-1-25,第一章 电磁场的数学物理基础,49,任意闭合面通量:,C,S,2.3.2 恒定磁场的散度和旋度,1.恒定磁场的散度与磁通连续性原理,2005-1-25,第一章 电磁场的数学物理基础,50,任意闭合面通量:,磁通处处连续-磁感应线总是闭合曲线。,51,磁通连续性原理表明:恒定磁场是无散场,磁感应线是无起点和 终点的闭合曲线。自然界中不存在孤立磁 荷,磁单极,恒定场
16、的散度(微分形式),磁通连续性原理(积分形式),2005-1-25,第一章 电磁场的数学物理基础,52,磁场的环流:,C,C,P,dl,dl,2.恒定磁场的旋度与安培环路定理,2005-1-25,第一章 电磁场的数学物理基础,53,回顾:立体角 在半径为R的球面上取面元,与球心构成的锥体。定义锥体对球心所张的立体角:整个球面对球心所张的立体角(球面度):任意曲面元对一点所张的立体角,与是否球面无关,2005-1-25,第一章 电磁场的数学物理基础,54,如图:分析沿任意C的环流特性,P为C上的一个场点.,C,C,P,dl,dl,2005-1-25,第一章 电磁场的数学物理基础,55,C,C,P
17、,dl,dl,C上场点P张立体角W(C)P沿C移动dl-立体角增加 dW,如图:分析沿任意C的环流特性,P为C上的一个场点.,2005-1-25,第一章 电磁场的数学物理基础,56,C,C,P,dl,dl,等效于p不动,c移动-dl,立体角的增加 dW,-dl,如图:分析沿任意C的环流特性,P为C上的一个场点.,C上场点P张立体角W(C)P沿C移动dl-立体角增加 dW,2005-1-25,第一章 电磁场的数学物理基础,57,C,C,P,dl,只计算c移动-dl时,立体角的增量 dW,-dl,如图:分析沿任意C的环流特性,P为C上的一个场点.,2005-1-25,第一章 电磁场的数学物理基础,
18、58,C,C,P,dl,-dl,如图:分析沿任意C的环流特性,P为C上的一个场点.,只计算c移动-dl时,立体角的增量 dW,2005-1-25,第一章 电磁场的数学物理基础,59,p沿回路C走一周,由知,当C和C不套连时:,P,2005-1-25,第一章 电磁场的数学物理基础,60,当C和C套连时:起点A-终点B时:,P,AB,改写为积分式(安培环路定理),再由C的任意性,(安培环路定理微分形式),61,安培环路定理表明:恒定磁场是有旋场,是非保守场、电流是磁 场的旋涡源。,恒定磁场的旋度(微分形式),安培环路定理(积分形式),安培环路,62,解:分析场的分布,取安培环路如图,则,根据对称性
19、,有,故,在磁场分布具有一定对称性的情况下,可以利用安培环路定理计算磁感应强度。,3.利用安培环路定理计算磁感应强度,例2.3.2 求电流面密度为 的无限大电流薄板产生的磁感应强度。,63,解 选用圆柱坐标系,则,应用安培环路定理,得,例 求载流无限长同轴电缆产生的磁感应强度。,取安培环路,交链的电流为,64,应用安培环路定理,得,65,2.4 媒质的电磁特性,本节内容 2.4.1 电介质的极化 电位移矢量 2.4.2 磁介质的磁化 磁场强度 2.4.3 媒质的传导特性,媒质对电磁场的响应可分为三种情况:极化、磁化和传导。,描述媒质电磁特性的参数为:介电常数、磁导率和电导率。,66,2.4.1
20、 电介质的极化 电位移矢量,1.电介质的极化现象,电介质的分子分为无极分子和有极分子。,在电场作用下,介质中无极分子的束缚电荷发生位移,有极分子的固有电偶极矩的取向趋于电场方向,这种现象称为电介质的极化。,无极分子的极化称为位移极化,有极分子的极化称为取向极化。,67,2.极化强度矢量,极化强度矢量 是描述介质极化程 度的物理量,定义为,分子的平均电偶极矩,的物理意义:单位体积内分子电偶 极矩的矢量和。,极化强度与电场强度有关,其关系一般比较复杂。在线性、各向同性的电介质中,与电场强度成正比,即,电介质的电极化率,n为单位体积内的平均分子数,68,由于极化,正、负电荷发生位移,在电介质内部可能
21、出现净余的极化电荷分布,同时在电介质的表面上有面分布的极化电荷。,3.极化电荷,(1)极化电荷体密度,在电介质内任意作一闭合面S,只有电偶极矩穿过S 表面的分子对 S 内的极化电荷有贡献。在S上取一小面元dS,以dS为底l为斜高构成一个体积元,由于负电荷位于斜柱体内的电偶极矩才穿过小面元 dS,因此dS对极化电荷的贡献为,69,(2)极化电荷面密度,紧贴电介质表面取如图所示的闭合曲面,则穿过面积元 的极化电荷为,故得到电介质表面的极化电荷面密度为,S 所围的体积内的极化电荷 为,70,4.电位移矢量 介质中的高斯定理,介质的极化过程包括两个方面:外加电场的作用使介质极化,产生极化电荷;极化电荷
22、反过来激发电场,两者相互制约,并达到平衡状 态。无论是自由电荷,还是极化电荷,它们都激发电场,服 从同样的库仑定律和高斯定理。,介质中的电场应该是外加电场和极化电荷产生的电场的叠加,应用高斯定理得到:,71,小结:静电场是有散无旋场,电介质中的基本方程为,引入电位移矢量(单位:C/m2),将极化电荷体密度表达式 代入,有,则有,其积分形式为,(微分形式),,(积分形式),72,其中 称为介质的介电常数,单位F/m 称为介质的相对介电常数(无量纲)。,在这种情况下,*介质有多种不同的分类方法,如:,均匀和非均匀介质各向同性和各向异性介质时变和时不变介质,线性和非线性介质,5.电介质的本构关系,极
23、化强度 与电场强度 之间的关系由介质的性质决定。对于线性各向同性介质,和 有简单的线性关系,2005-1-25,第一章 电磁场的数学物理基础,73,3.4 半径为a的球中充满密度 的体电荷,已知电场分布为 其中A为常数,试求电荷密度,解:利用高斯定理的微分形式,即,得,在 区域:,在 区域:,74,2.4.2 磁介质的磁化 磁场强度,1.磁介质的磁化,介质中分子或原子内的电子运动形成分子电流,形成分子磁矩,在外磁场作用下,分子磁矩定向排列,宏观上显示出磁性,这种现象称为磁介质的磁化。,无外磁场作用时,分子磁矩不规则排列,宏观上不显磁性。,75,2.磁化强度矢量,磁化强度 是描述磁介质磁化程度的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场的基本规律 电磁场 基本 规律 PPT 课件

链接地址:https://www.31ppt.com/p-5555928.html