《滤波器比较》PPT课件.ppt
《《滤波器比较》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《滤波器比较》PPT课件.ppt(49页珍藏版)》请在三一办公上搜索。
1、第五章 图像的噪声抑制,所谓的图像噪声,是图像在摄取时或是传输时所受到的随机干扰信号。常见的有椒盐噪声和高斯噪声。,图像噪声的概念,椒盐噪声的特征:出现位置是随机的,但噪声的幅值是基本相同的。高斯噪声的特征:出现在位置是一定的(每一点上),但噪声的幅值是随机的。,图像噪声的概念,设计噪声抑制滤波器,在尽可能保持原图信息的基础上,抑制噪声。均值滤波器中值滤波器边界保持类滤波器,图像噪声的抑制方法,均值滤波器 原理,在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。将模板中的全体像素的均值来替代原来的像素值的方法。,以模块运算系数表示即:,3,4,4,4,5,6,6,7,8,C=
2、6.6316,C=5.5263,均值滤波器 处理方法,待处理像素,示例,边框保留不变的效果示例,均值滤波器的改进 加权均值滤波,均值滤波器的缺点是,会使图像变的模糊,原因是它对所有的点都是同等对待,在将噪声点分摊的同时,将景物的边界点也分摊了。为了改善效果,就可采用加权平均的方式来构造滤波器。,均值滤波器的改进 加权均值滤波,如下,是几个典型的加权平均滤波器。,示例,示例,示例,示例,中值滤波器 问题的提出,虽然均值滤波器对噪声有抑制作用,但同时会使图像变得模糊。即使是加权均值滤波,改善的效果也是有限的。为了有效地改善这一状况,必须改换滤波器的设计思路,中值滤波就是一种有效的方法。,中值滤波器
3、 设计思想,因为噪声(如椒盐噪声)的出现,使该点像素比周围的像素亮(暗)许多。如果在某个模板中,对像素进行由小到大排列的重新排列,那么最亮的或者是最暗的点一定被排在两侧。取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达到滤除噪声的目的。,中值滤波器 原理示例,2,6,6,中值滤波器 处理示例,例:模板是一个1*5大小的一维模板。原图像为:2 2 6 2 1 2 4 4 4 2 4 处理后为:,2,2,(1,2,2,2,6),2,(1,2,2,2,6),2,(1,2,2,4,6),2,2,4,4,4,4,4,(2,4,4),中值滤波器 滤波处理方法,与均值滤波类似,做3*3的模板
4、,对9个数排序,取第5个数替代原来的像素值。,中值滤波器 例题,2,3,4,5,6,6,6,7,8,C=6.6316,C=5.5263,示例,中值滤波器与均值滤波器的比较,对于椒盐噪声,中值滤波效果比均值滤波效果好。,中值滤波器与均值滤波器的比较,原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。中值滤波是选择适当的点来替代污染点的值,所以处理效果好。因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。,中值滤波器与均值滤波器的比较,对于高斯噪声,均值滤波效果比均值滤波效果好。,中值滤波器与均值滤波器的比较,原因:高斯噪声是幅值近似正态分布,但分布在每点像素上。
5、因为图像中的每点都是污染点,所以中值滤波选不到合适的干净点。因为正态分布的均值为0,所以均值滤波可以消除噪声。(注意:实际上只能减弱,不能消除。思考为什么?),边界保持类平滑滤波器 问题的提出,经过平滑滤波处理之后,图像就会变得模糊。分析原因,在图像上的景物之所以可以辨认清楚是因为目标物之间存在边界。而边界点与噪声点有一个共同的特点是,都具有灰度的跃变特性。所以平滑处理会同时将边界也处理了。,边界保持类平滑滤波器 设计思想,为了解决图像模糊问题,一个自然的想法就是,在进行平滑处理时,首先判别当前像素是否为边界上的点,如果是,则不进行平滑处理;如果不是,则进行平滑处理。,K近邻(KNN)平滑滤波
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 滤波器比较 滤波器 比较 PPT 课件
链接地址:https://www.31ppt.com/p-5548805.html