《浅谈组合数学》PPT课件.ppt
《《浅谈组合数学》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《浅谈组合数学》PPT课件.ppt(57页珍藏版)》请在三一办公上搜索。
1、浅谈组合数学,南开大学 组合数学中心 陈永川 2004年7月,组合数学概述,现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等;另一类就是研究离散对象的组合数学。计算机出现以后,由于离散对象的处理是计算机科学的核心,研究离散对象的组合数学得到迅猛发展。,组合数学概述,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。Gian-Carlo Rota教授曾提出要向中国领导人呼吁,组合数学是计算机软件
2、产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。,组合数学的历史,传说在公元前23世纪大禹治水的时候,在黄河支流洛水中,浮现出一个 大乌龟,甲上背有9种花点的图案,人们将图案中的花点数了一下,竞惊奇地发现9种花点数正巧是19这9个数,各数位置的排列也相当奇妙,横的3行、纵的3列以及两对角线上各自的数字之和都为15。,上图为三阶洛书,幻方问题,组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。,阶 幻 方,阿基米德手稿,上图为一份用希腊文写在羊皮纸上的阿基米德手稿副本,最近科学家借助现代科技手
3、段初步破译了古希腊数学家阿基米德的这篇论文,结论是这篇被称作Stomachion的论文解决的是组合数学问题。,阿基米德手稿,在论文中阿基米德是在计算把14条不规则的纸带拼成正方形一共能有多少种不同的拼法。这在现在被称为tiling问题。当今数学家借助计算机得出的答案是17152种拼法,这在当时是相当困难的。,Periodic Tilings,Non-Periodic Tilings,Penrose Tilings,Symmetric Tilings,Symmetric Tilings,贾宪三角,中国最早的组合数学理论可追溯到宋朝时期的”贾宪三角”,后来被杨辉引用,所以普遍称之为”杨辉三角”,这
4、在西方是1654年由帕斯卡提出,但比中国晚了400多年。,11,11,2,11,3,3,11,4,6,4,11,5,10,10,5,11,6,15,20,15,6,1,七桥问题,近代图论的历史可追溯到18世纪的七桥问题穿过Knigsberg城的七座桥,要求每座桥通过一次且仅通过一次。Euler1736年证明了不可能存在这样的路线。,Euler 定理,如果一个图包含一条经过每条边恰好一次的闭途径,则称这个图为欧拉图。对任意的非空连通图,若它是欧拉的,当且仅当它没有奇度点。,Knigsberg桥对应的图,36 军官问题(欧拉 1779)The Great Frederic的阅兵难题-欧拉的困惑 拉
5、丁方阵:,正交拉丁方阵:,Euler 猜想,不存在6阶正交拉丁方不存在4k+2阶正交拉丁方 现在的结论对任正整数 n2,6,存在 n 阶正交拉丁方,组合数学的应用,组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科如计算机科学、编码和密码学、物理、化学、生物等学科中,甚至在企业管理,交通规划,战争指挥,金融分析,城市物流等领域均有重要应用。,组合数学的应用,著名的组合数学家 Thomas Tutte 在组合数学界是泰斗级的大师。直到最近人们才知道,原来他对提前结束“二战”有着突出贡献。Tutte 从德军的两条情报密码出发,用组合数学的方法,重建了敌人的密码机,确定了德军密码的内部结构
6、,从而获得了极为重要的情报。,组合数学的应用,在美国有一家公司用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。在美国已有专门的公司用组合设计的方法开发软件,来解决工业界中的试验设计问题。德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。,四色问题,在日常生活中我们常常可以遇到组合数学的问题。比如一个著名的世界难题“四色猜想”:一张地图,用一种颜色对一个地区着色,那么一共只需要四种颜色就能保证每两个相邻的地区颜色不同。,四色问题,1852年,刚从伦敦大学毕业的Francis Guthrie提出了四色猜想。1878年著名的英国数学家Ca
7、yley向数学界征求解答。此后数学家 Heawood 花费了毕生的精力致力于四色研究,于1890年证明了五色定理(每个平面图都是5顶点可着色的)。直到1976年6月,美国数学家 K.Appel与 W.Haken,在3台不同的电子计算机上,用了1200小时,才终于完成了“四色猜想”的证明,从而使四色猜想成为了四色定理。,中国邮递员问题,1962年中国组合数学家管梅谷教授提出了著名的“中国邮递员问题”。一个邮递员从邮局出发,要走完他所管辖的每一条街道,然后返回邮局。那么如何选择一条尽可能短的路线。,中国邮递员问题,这个问题可以转化为:给定一个具有非负权的赋权图G,(1)用添加重复边的方法求G的一个
8、Euler赋权母图G*,使得 尽可能小。(2)求G*的Euler 环游。这个问题可以由Fleury算法和1973年著名组合数学家J.Edmonds和Johnson 给出的一个好的算法解决。,货郎担问题,一个货郎要去若干城镇卖货,然后回到出发地,给定各城镇之间所需的旅行时间后,应怎样计划他的路线,使他能去每个城镇恰好一次而且总时间最短?,货郎担问题,用图论的术语说,就是在一个赋权完全图中,找出一个具有最小权的Hamilton 圈(包含图G的每个顶点的圈)。这个问题目前还没有有效的算法。Hamilton问题是图论的一个重要问题,图论中的许多问题,包括四色问题、图的因子问题,最终都与Hamilton
9、问题有关。,相识问题,1958年,美国的数学月刊上登载着这样一个有趣的问题:“任何6个人的聚会,其中总会有3个人相互认识,或3个人相互不认识”。用6个顶点表示6个人,用红色连线表示两者相识,用蓝色连线表示两者不相识。于是问题化为下述命题:,相识问题,对6个顶点的完全图K6任意进行红、蓝两边着色,则图中一定存在一个同色三角形。,Ramsey数,推广为一般问题:给定任意正整数a和b,总存在一个最小整数 r(a,b),使得r(a,b)个人中或者有 a 个人互相认识,或者有 b 个人互相不认识。称 r(a,b)为Ramsey数。,Erds-Szekeres 定理,Ramsey定理是由Erds和Szek
10、eres于1935年提出的。它是下述定理的一个推广:定理(Erds和Szekeres):若 a,b N,n=ab+1,且x1,xn是任一n个实数的序列,则这个序列包含一个有a+1项的单调递增(递减)的子序列,或一个有b+1项的单调递减(递增)的子序列。,Happy End 问题,对于n3,处于平面上一般位置(任意三个顶点不共线)的g(n)个顶点中,一定有n个顶点组成一个凸n边形。5顶点一定含有一个凸四边形Erdos 和 Szekeres(1935)证明了 g(n)一定存在,并且有,5个顶点时的情形,机器证明吴消元法,1976年吴文俊教授开始进行研究几何定理的机器证明,并在很短的时间内取得重大突
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浅谈组合数学 浅谈 组合 数学 PPT 课件
链接地址:https://www.31ppt.com/p-5546970.html