《概率与统计基础》PPT课件.ppt
《《概率与统计基础》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《概率与统计基础》PPT课件.ppt(24页珍藏版)》请在三一办公上搜索。
1、1,第一章 序列的统计量、检验和分布,EViews提供序列的各种统计图、统计方法及过程。当用前述的方法向工作文件中读入数据后,就可以对这些数据进行统计分析和图表分析。,EViews可以计算一个序列的各种统计量并可用表、图等形式将其表现出来。视图包括最简单的曲线图,一直到核密度估计。,2,打开工作文件,双击一个序列名,即进入序列的对话框。单击“view”可看到菜单分为四个区,第一部分为序列显示形式,第二和第三部分提供数据统计方法,第四部分是转换选项和标签。,3,1.1 描述统计量,以直方图显示序列的频率分布。直方图将序列的长度按等间距划分,显示观测值落入每一个区间的个数。同直方图一起显示的还有一
2、些标准的描述统计量。这些统计量都是由样本中的观测值计算出来的。如图(例1.1):,4,例1.3中GDP增长率的统计量:,5,均值(mean)即序列的平均值,用序列数据的总和除以数据的个数。,中位数(median)即从小到大排列的序列的中间值。是对序列分布中心的一个粗略估计。最大最小值(max and min)序列中的最大最小值。标准差(Standard Deviation)标准差衡量序列的离散程度。计算公式如下,N 是样本中观测值的个数,是样本均值。,6,偏度(Skewness)衡量序列分布围绕其均值的非对称性。计算公式如下,是变量方差的有偏估计。如果序列的分布是对称的,S值为0;正的S值意味
3、着序列分布有长的右拖尾,负的S值意味着序列分布有长的左拖尾。例1.1中X的偏度为0,说明X的分布是对称的;而例1.3中GDP增长率的偏度是0.78,说明GDP增长率的分布是不对称的。,7,峰度(Kurtosis)度量序列分布的凸起或平坦程度,计算公式如下,分布的凸起程度大于 正态分布;如果K值小于3,序列分布相对于正态分布是平坦的。例1.1中X的峰度为2.5,说明X的分布相对于正态分布是平坦的;而例1.3中GDP增长率的峰度为2.14,说明GDP增长率的分布相对于正态分布也是平坦的。,意义同S中,,正态分布的 K 值为3。如果 K 值大于3,,8,Jarque-Bera 检验 检验序列是否服从
4、正态分布。统计量计算公式如下,S为偏度,K为峰度,k是序列估计式中参数的个数。在正态分布的原假设下,J-B统计量是自由度为2的 2 分布。J-B统计量下显示的概率值(P值)是J-B统计量超出原假设下的观测值的概率。如果该值很小,则拒绝原假设。当然,在不同的显著性水平下的拒绝域是不一样的。例1.1中X的J-B统计量下显示的概率值(P值)是0.92,接受原假设,X 服从正态分布;而例1.3中GDP增长率的的J-B统计量的概率值(P值)是0.455,也接受原假设,说明GDP增长率服从正态分布。,9,1.2 均值、中位数、方差的假设检验,这部分是对序列均值、中位数、方差的假设检验。在序列对象菜单选择V
5、iew/tests for descriptive stats/simple hypothesis tests,就会出现下面的序列分布检验对话框:,10,1.均值检验,如果不指定序列 x 的标准差,EViews将在 t 统计量中使用该标准差的估计值 s。,是 x 的样本估计值,N是x的观测值的个数。在原假设下,如果x服从正态分布,t 统计量是自由度为N-1的t分布。,原假设是序列 x 的期望值 m,备选假设是 m,即,11,如果给定x的标准差,EViews计算t 统计量:,是指定的x的标准差。,要进行均值检验,在Mean内输入 值。如果已知标准差,想要计算t统计量,在右边的框内输入标准差值。可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率与统计基础 概率 统计 基础 PPT 课件
链接地址:https://www.31ppt.com/p-5536194.html