《显著性检验》PPT课件.ppt
《《显著性检验》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《显著性检验》PPT课件.ppt(113页珍藏版)》请在三一办公上搜索。
1、第四章 显著性检验,小概率事件实际不可能性原理,1.1.2 统计假设检验的基本原理,在统计学上,把小概率事件在一次试验中看成是实际不可能发生的事件称为小概率事件实际不可能性原理,亦称为小概率原理。小概率事件实际不可能性原理是统计学上进行假设检验(显著性检验)的基本依据。,概率小于0.05称之为小概率事件。,1.1.3 统计假设检验的基本原理及步骤,1.根据研究目的,对研究总体提出假设,无效假设(null hypothesis),是被检验的假设,通过检验可能被接受,也可能被否定。,与H0对应的假设,只有是在无效假设被否定后才可接受的假设。无充分理由是不能轻率接受的。,备择假设(alternati
2、ve hypothesis),一般情况下=0.05,1.1.3 统计假设检验的基本原理及步骤,2.确定显著水平,3.计算概率,在 成立的前提下,构造合适的统计量,由该统计量的抽样分布计算样本统计量的概率,对前例分析,无效假设H0:成立,试验的表面效应是随机误差引起的。那么,可以把试验中所获得的 看成是从 总体中抽取的一个样本平均数,由样本平均数的抽样分布理论可知,,N(0,2n)。,1.1.3 统计假设检验的基本原理及步骤,=0,根据小概率事件实际不可能原理,当试验的表面效应是试验误差的概率小于0.05时,认为在一次试验中试验表面效应是试验误差实际上是不可能的,因而否定H0,接受HA,即认为试
3、验的处理效应是存在的。,统计推断 根据“小概率事件实际不可能性原理”否定或接受无效假设,1.1.3 统计假设检验的基本原理及步骤,三、显著水平与两种类型的错误(一)显著水平,用来否定或接受无效假设的概率标准叫显著水平,记作。在生物学研究中常取=0.05,称 为 5%显 著 水 平;或=0.01,称 为 1%显 著 水 平或极显著水平。,对于上述例子的检验来说,若u1.96,则说明试验的表面差异属于试验误差的概率p0.05,即表面差异属于试验误差的可能性大,不能否定。统计学上把这一检验结果表述为:“总体平均数与差异不显著”,在计算所得的u 值的右上方标记“”或不标记符号;,若|,则说明试验的表面
4、差异属于试验误差的概率p在0.010.05之间,即0.01p0.05,表面差异 属 于 试 验误差的可能性较小,应否定H0:,接受HA:。统计学上把这一检验结果表述为:“总体平均数与 差异显著”,在计算所得的值的右上方标记“*”;,若|2.58,则说明试验的表面差异属于试验误差的概率p不超过0.01,即p 0.01,表面差异属于试验误差的可能性更小,应否定H0:,接受HA:。统计学上把这一检验结果表述为:“总体平均数与差异极显著”,在计算所得的 值的右上方标记“*”。,可以看到,是否否定无效假设,是用实际计算出的检验统计数的绝对值与显著水平对应的临界值比较:若|,则在 水平上否定 若|,则 不
5、 能 在 水 平 上 否定。,区间 和 称为水平 上的否定域,而区间 则称为 水平上的接受域。,因为在显著性检验中,否定或接受无效假设的依据是“小概率事件实际不可能性原理”,所以我们下的结论不可能有百分之百的把握。,(二)两类错误,例如,经检 验获得“差异显著”的结论,我们有95%的把握否定无效假设H0,同时要冒5%下错结论的风险;经 检验获得“差异极显著”的结论,我们有99%的把握否定无效假设H0,同时要冒1%下错结论的风险;而经 检验获得“差异不显著”的结论,在统计学上是指“没有理由”否定无效假设H0,同样也要冒下错结论的风险。,显著性检验可能出现两种类型的错误:,型错误 与型错误。,型错
6、误又称为错误,就是把非真实的差异错判为是真实的差异,即实际上H0正确,检验结果为否定H0。犯类型错误的可能性一般不会超过所选用的显著水平;,型错误又称为错误,就是把真实的差异错判为是非真实的差异,即实际上HA正确,检验结果却未能否定H0。犯类型错误的可能性记为,一般是随着的减小或试验误差的增大而增大,所以越小或试验误差越大,就越容易将试验的真实差异错判为试验误差。,因此,如果经 检验获得“差异显著”或“差异极显著”,我们有95%或99%的把握认为,这两个样本所在的总体平均数不相同,判断错误的可能性不超过5%或1%;若经 检验获得“差异不显著”,我们只能认为在本次试验条件下,这两个样本所在的总体
7、平均数没有差异的假设 H0:未被否定,这有两种可能存在:或者是这两个总体平均数确实没有差异,或者是这两个总体平均数有差异而因为试验误差大被掩盖了。,因而,不能仅凭统计推断就简单地作出绝对肯定或绝对否定的结论。“有很大的可靠性,但有一定的错误率”这是统计推断的基本特点。,显著性检验的两类错误归纳如下:,表4-1 显著性检验的两类错误,为了降低犯两类错误的概率,一般从选取适当的显著水平和增加试验重复次数来考虑。因为选取数值小的显著水平值可以降低犯类型错误的概率,但与此同时也增大了犯型错误的概率,所以显著水平值的选用要同时考虑到犯两类错误的概率的大小。,对于田间试验,由于试验条件不容易控制完全一致,
8、试验误差较大,为了降低犯型错误的概率,也有选取显著水平为0.10或0.20。通常采用适当增加试验处理的重复次数(即样本容量),以降低试验误差,提高试验的精确度,降低犯型错误的概率。,在【例41】中,对应于无效假设 H0:的备择假设为HA:。HA实际上包含了或这两种情况。此时,在水平上否定域为和,对称地分配在分布曲线的两侧尾部,每侧尾部的概率为。这种利用两尾概率进行的检验叫两尾检验.为 水平两尾检验的临界值。,四、两尾检验与一尾检验,双侧检验时H0的接受域和否定域,两尾检验的目的在于判断 与 有无差异,而不考虑 与 谁大谁小。,在有些情况下两尾检验不一定符合实际情况。,例如,目前我国大豆育种工作
9、者认为,大豆籽粒蛋白质含量超过45%()的品种为高蛋白品种。如果进行样品含量检测,我们关心的是 所在的总体平均数 大于。此时的无效假设仍为H0:,但备择假设则为HA:。这时否定域位于 分布曲线的右尾,即。例如当=0.05时,否定域为。,又如,国家规定稻米中某种农药成分的残留物含量应低于0.1%()。在抽检中,我们关心的是 所在的总体平均数 小于(即该品种属于合格产品)。此时的无效假设仍为H0:,但备择假设则为HA:。这 时 否 定 域 位 于 分 布 曲 线 的 左尾,即。例如当=0.05时,分布的否定域为,见图4-2。,一尾检验的=两尾检验的=2.33。,这种利用一尾概率进行的检验叫一尾检验
10、。此时 为一尾检验的临界 值。显然,一尾检验的=两尾检验的。,例如,一尾检验的=两尾检验的=1.64,,实际应用中,如何选用两尾检验或一尾检验,应根据专业的要求在试验设计时就确定。一般情况下,若事先不知道与谁大谁小,只是为了检验与 是否存在差异,则选用两尾检验;如果凭借一定的专业知识和经验推测 应小于(或大于)时,则选用一尾检验。,第二节 样本平均数与总体 平均数差异显著性检验,在实际研究工作中常常要检验一个样本平均数与已知的总体平均数是否有显著差异,即检验该样本是否来自某一总体。,u 检验(u-test),就是在假设检验中利用标准正态分布来进行统计量的概率计算的检验方法。Excel中统计函数
11、(Ztest)。,单个样本平均数的u 检验,u=(x-),由抽样分布理论可知,有两种情况的资料可以用u检验方法进行分析:1.样本资料服从N(,2),并且总体方差2已知2.总体方差虽然未知,但样本为大样本(n30),单个样本平均数的u 检验,(一)如果总体 已知或 未知但为大样本(n 30),则用u 检验法。,例:糯玉米苏糯1号的鲜果穗重x-N(216.5,45.2)。现引进一高产品种奥特1号,在8个小区种植,得其鲜果穗重分别为:255.0,185.0,252.0,290.0,159.9,190.0,212.7,278.5,试问新引入品种的鲜果穗重与苏糯1号有无显著差异?,提出假设,:,216.
12、5g,:,216.5g,3、计算 u 值 u 值计算公式为,,,2.确定显著水平,=0.05,4统计推断,故p0.05,不能否定 表明新引进品种新果穗重与苏糯1号差异不显著。,1.96,u=0.712,:,216.5g,2.1.1 单个样本平均数的u 检验,以本例演示Excel中统计函数(Ztest)的使用,2 样本平均数的假设检验-u 检验,u=(x-),(二)如果总体 未知、且为小样本(n 30),则用t检验法。,t 检验法,就是在显著性检验时利用 t分布进行概率计算的检验方法。,【例43】晚稻良种汕优63的千粒重 27.5g。现育成一高产品种协优辐819,在9个小区种植,得其千粒重为:3
13、2.5、28.6、28.4、24.7、29.1、27.2、29.8、33.3、29.7(g)问新育成品种的千粒重与汕优63有无显著差异?,提出假设,:,27.5,:,27.5g。,2、计算t值 t值计算公式为,,,此例,先计算样本平均数、样本标准差S、样本均数标准误 如下:,29.255,=2.587,=,=,=0.862,所以,=,=2.036,3统计推断,由df=n-1=9-1=8查临界t值,得:计算所得的,故p0.05,不能否定,表明新育成品种千粒重与当地良种汕优63的千粒重差异不显著,可以认为新育成品种千粒重与当地良种汕优63的千粒重相同。,第三节两个样本平均数差异显著性检验,两个样本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 显著性检验 显著 检验 PPT 课件

链接地址:https://www.31ppt.com/p-5528515.html