《方程回归模型》PPT课件.ppt
《《方程回归模型》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《方程回归模型》PPT课件.ppt(22页珍藏版)》请在三一办公上搜索。
1、第二章 一元回归模型概述,回归分析的性质 回归分析的一些基本概念对线性的几点说明,2.1 回归分析的性质,(1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。(2)统计依赖或相关关系:研究的是非确定现象随机变量间的关系。(以一定的统计规律呈现出来的关系),一、变量间的关系及回归分析的基本概念,1、变量间的关系 经济变量之间的关系,大体可分为两类:,对变量间统计依赖关系的考察主要是通过相关分析(correlation analysis)或回归分析(regression analysis)来完成的:,例如:函数关系:,统计依赖关系/统计相关关系:,不线性相关并不意味着不相关;有相关关系
2、并不意味着一定有因果关系;回归分析/相关分析研究一个变量对另一个(些)变量的统计依赖关系,但它们并不意味着一定有因果关系。相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的。回归分析对变量的处理方法存在不对称性,即区分应变量(被解释变量)和自变量(解释变量):前者是随机变量,后者不是。,注意:,回归与因果关系虽然回归分析研究一个变量对另一(些)变量的依赖关系,但它并不意味着因果关系。Kendall和Stuart认为一个统计关系式不管多么强,也不管多么有启发性,却永远不能确立因果方面的联系,对因果关系方面的理念必须来自统计学之外,最终来自这种或那种理论。从逻辑上说,统计关系式本身不肯能
3、意味着任何因果关系。要谈因果关系,必须诉诸先验或理论上的思考。,2.2回归分析的基本思想:一、利用样本来推断总体 1、总回归函数(PRF)2、样本回归函数(SRF)3、样本回归函数对总回归函数的进行拟合:(1)最小二乘法(OLS)(2)最小二乘法的基本假定(3)最小二乘估计的精度或标准误(4)最小二乘估计量的性质(5)拟合优度的度量(6)区间估计或假设检验 4、利用回归方程进行分析、评价及预测。,1、回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。这里:
4、前一个变量被称为被解释变量(Explained Variable)或应变量(Dependent Variable),后一个(些)变量被称为解释变量(Explanatory Variable)或自变量(Independent Variable)。,二、回归分析的基本概念,对变量测量尺度的注解:分类尺度(名义尺度)顺序尺度(序数尺度)间隔尺度(区间尺度)比率尺度(比率尺度),由于变量间关系的随机性,回归分析关心的是根据解释变量的已知或给定值,考察被解释变量的总体均值,即当解释变量取某个确定值时,与之统计相关的被解释变量所有可能出现的对应值的平均值。,例2.1:一个假想的社区有100户家庭组成,要研
5、究该社区每月家庭消费支出Y与每月家庭可支配收入X的关系。即如果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水平。,三、总体回归函数,为达到此目的,将该100户家庭划分为组内收入差不多的10组,以分析每一收入组的家庭消费支出。,(1)由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同;(2)但由于调查的完备性,给定收入水平X的消费支出Y的分布是确定的,即以X的给定值为条件的Y的条件分布(Conditional distribution)是已知的,如:P(Y=561|X=800)=1/4。,因此,给定收入X的值Xi,可得消费支出Y的条件均值(conditional me
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方程回归模型 方程 回归 模型 PPT 课件
链接地址:https://www.31ppt.com/p-5522789.html