《数学归纳法肖》PPT课件.ppt
《《数学归纳法肖》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《数学归纳法肖》PPT课件.ppt(16页珍藏版)》请在三一办公上搜索。
1、2.3 数学归纳法(第一课时),牟定县第一高级中学中学 2010-9-10,情境1.观察下列各等式,你发现了什么?,问题情境,思考:你由不完全归纳法所发现的结论正确吗?若不正确,请举一个反例;若正确,如何证明呢?,情境2.观察多米诺骨牌的游戏。,学生活动,思考(1)你能说出使所有多米诺骨牌全部倒下的条件是什么吗?(2)你能类比多米诺骨牌游戏证明情境1中的猜想吗?,,,(1)第一张牌能倒下;,使所有多米诺骨牌全部倒下的条件是:,(2)假设第k张能倒下,则一定能压倒紧挨的第k1张牌.,数学建构,类比多米诺骨牌游戏证明情境1中的猜想 的步骤为:,(1)证明当n=1时猜想成立,(2)证明若当n=k时命
2、题成立,则n=k+1时命题也成立.,完成了这两个步骤以后就可以证明上述猜想对于所有的正整数n都是成立的。,相当于第一张牌能倒下,相当于使所有骨牌倒下的第2个条件,证明 当n=1时,左边1 右边,等式显然成立。,例 证明:,数学运用,递推基础,递推依据,假设当n=k时等式成立,即,那么,当n=k+1时,有,这就是说,当n=k+1时,等式也成立。,根据和,可知对任何nN*等式都成立。,先证明当n取第一个值n0(例如n0=1或n0=2)时命题成立,然后假设当n=k(kN,kn0)时命题成立,证明当n=k+1时命题也成立,这种证明方法叫做数学归纳法.,一般地,对于某些与正整数有关的数学命题我们常采用下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学归纳法肖 数学 归纳法 PPT 课件

链接地址:https://www.31ppt.com/p-5519302.html