《微分方程建模》PPT课件.ppt
《《微分方程建模》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《微分方程建模》PPT课件.ppt(95页珍藏版)》请在三一办公上搜索。
1、第三章微分方程模 型,浙江大学数学建模实践基地,3.1 微分方程的几个简单实例,在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题,,本节将通过一些最简单的实例来说明微分方程建模的一般方法。在连续变量问题的研究中,微分方程是十分常用的数学工具之一。,例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。,从图3-1中不难看出,小球所受的合力为mgsin,根据牛顿第二定律可得:,这是理想单摆应满足的运动方程,(3.1)是一个两阶非线性方程,不易求解。当很小时,sin,此时,可
2、考察(3.1)的近似线性方程:,由此即可得出,(3.1)的近似方程,例2 我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。,这一问题属于对策问题,较为复杂。讨论以下简单情形:,敌潜艇发现自己目标已暴露后,立即下潜,并沿着直 线方向全速逃逸,逃逸方向我方不知。,设巡逻艇在A处发现位于B处的潜水艇,取极坐标,以B为极点,BA为极轴,设巡逻艇追赶路径在此极坐标下的方程为r=r(),见图3-2。,由题意,故ds=2dr,图3-2可看出,,故有:,先使自己到极点的距离等于潜艇到
3、极点的距离,然后按(3.4)对数螺线航行,即可追上潜艇。,追赶方法如下:,例3 一个半径为Rcm的半球形容器内开始时盛满了水,但由于其底部一个面积为Scm2的小孔在t=0时刻被打开,水被不断放出。问:容器中的水被放完总共需要多少时间?,解:以容器的底部O点为 原点,取坐标系如图3.3所示。令h(t)为t时刻容器中水的高度,现建立h(t)满足的微分方程。,设水从小孔流出的速度为v(t),由力学定律,在不计水的内部磨擦力和表面张力的假定下,有:,因体积守衡,又可得:,易见:,故有:,这是可分离变量的一阶微分方程,得,例4 一根长度为l的金属杆被水平地夹在两端垂直的支架上,一端的温度恒为T1,另一端
4、温度恒为T2,(T1、T2为常数,T1 T2)。金属杆横截面积为A,截面的边界长度为B,它完全暴露在空气中,空气温度为T3,(T3 T2,T3为常数),导热系数为,试求金属杆上的温度分布T(x),(设金属杆的导热率为),一般情况下,在同一截面上的各点处温度也不尽相同,如果这样来考虑问题,本题要建的数学模型当为一偏微分方程。,但由题意可以看出,因金属杆较细且金属杆导热系数又较大,为简便起见,不考虑这方面的差异,而建模求单变量函数T(x)。,热传导现象机理:当温差在一定范围内时,单位时间里由温度高的一侧向温度低的一侧通过单位面积的热量与两侧的温差成正比,比例系数与介质有关。,由泰勒公式:,金属杆的
5、微元x,x+dx在dt内由获得热量为:,同时,微元向空气散发出的热量为:,系统处于热平衡状态,故有:,所以金属杆各处温度T(x)满足的微分方程:,这是一个两阶常系数线性方程,很容易求解,为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。本节将建立几个简单的单种群增长模型,以简略分析一下这方面的问题。,种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,由此引起的误差将是十分微小的。,3.2 Malthus模型与Logistic模型,模型1 马尔萨斯(Malthus)模型,马尔萨斯在分析人口出生与死亡情况的资料后发
6、现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),既:,马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。,Malthus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象。,所以Malthus模型假设的人口净增长率不可能始终保持常数,它应当与人口数量有关。,模型2 Logistic模型,人口净增长率应当与人口数量有关,即:r=r(N),r(N)是未知函数,但根据实际背景,它无法用拟合方法来求。,为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在
7、建立实际问题的数学模型时,总是采用尽可能简单的方法。,r(N)最简单的形式是常数,此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项),(3.9)式还有另一解释,由于空间和资源都是有限的,不可能供养无限增长的种群个体,当种群数量过多时,由于人均资源占有率的下降及环境恶化、疾病增多等原因,出生率将降低而死亡率却会提高。设环境能供养的种群数量的上界为K(近似地将K看成常数),N表示当前的种群数量,K-N恰为环境还能供养的种群数量,(3.9)指出,种群增长率与两者的乘积成正比,正好符合统计规律,得到了实验结果的支持,这就是(3.9)也被称为统计筹算律的原因。,图3-5,对
8、(3.9)分离变量:,两边积分并整理得:,令N(0)=N0,求得:,N(t)的图形请看图3.5,大量实验资料表明用Logistic模型来描述种群的增长,效果还是相当不错的。例如,高斯把5只草履虫放进一个盛有0.5cm3营养液的小试管,他发现,开始时草履虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大量375个,实验数据与r=2.309,a=0.006157,N(0)=5的Logistic曲线:几乎完全吻合,见图3.6。,图3-6,Malthus模型和Logistic模型的总结,Malthus模型和Logistic模型均为对微分方程(3.7)所作的模拟近似方程。前一模型假设
9、了种群增长率r为一常数,(r被称为该种群的内禀增长率)。后一模型则假设环境只能供养一定数量的种群,从而引入了一个竞争项。,用模拟近似法建立微分方程来研究实际问题时必须对求得的解进行检验,看其是否与实际情况相符或基本相符。相符性越好则模拟得越好,否则就得找出不相符的主要原因,对模型进行修改。,Malthus模型与Logistic模型虽然都是为了研究种群数量的增长情况而建立的,但它们也可用来研究其他实际问题,只要这些实际问题的数学模型有相同的微分方程即可。,例5 赝品的鉴定,在第二次世界大战比利时解放以后,荷兰野战军保安机关开始搜捕纳粹同谋犯。他们从一家曾向纳粹德国出卖过艺术品的公司中发现线索,于
10、1945年5月29日以通敌罪逮捕了三流画家范梅格伦(HAVanmeegren),此人曾将17世纪荷兰名画家扬弗米尔(Jan Veermeer)的油画“捉奸”等卖给纳粹德国戈林的中间人。可是,范梅格伦在同年7月12日在牢里宣称:他从未把“捉奸”卖给戈林,而且他还说,这一幅画和众所周知的油画“在埃牟斯的门徒”以及其他四幅冒充弗米尔的油画和两幅德胡斯(17世纪荷兰画家)的油画,都是他自己的作品,这件事在当时震惊了全世界,为了证明自己是一个伪造者,他在监狱里开始伪造弗米尔的油画“耶稣在门徒们中间”,当这项工作接近完成时,范梅格伦获悉自己的通敌罪已被改为伪造罪,因此他拒绝将这幅画变陈,以免留下罪证。,为
11、了审理这一案件,法庭组织了一个由著名化学家、物理学家和艺术史学家组成的国际专门小组查究这一事件。他们用X射线检验画布上是否曾经有过别的画。此外,他们分析了油彩中的拌料(色粉),检验油画中有没有历经岁月的迹象。科学家们终于在其中的几幅画中发现了现代颜料钴兰的痕迹,还在几幅画中检验出了20世纪初才发明的酚醛类人工树脂。根据这些证据,范梅格伦于1947年10月12日被宣告犯有伪造罪,被判刑一年。可是他在监狱中只待了两个多月就因心脏病发作,于1947年12月30日死去。,然而,事情到此并未结束,许多人还是不肯相信著名的“在埃牟斯的门徒”是范梅格伦伪造的。事实上,在此之前这幅画已经被文物鉴定家认定为真迹
12、,并以17万美元的高价被伦布兰特学会买下。专家小组对于怀疑者的回答是:由于范梅格伦曾因他在艺术界中没有地位而十分懊恼,他下决心绘制“在埃牟斯的门徒”,来证明他高于三流画家。当创造出这样的杰作后,他的志气消退了。而且,当他看到这幅“在埃牟斯的门徒”多么容易卖掉以后,他在炮制后来的伪制品时就不太用心了。这种解释不能使怀疑者感到满意,他们要求完全科学地、确定地证明“在埃牟斯的门徒”的确是一个伪造品。这一问题一直拖了20年,直到1967年,才被卡内基梅伦(Carnegie-Mellon)大学的科学家们 基本上解决。,原理与模型,测定油画和其他岩石类材料的年龄的关键是本世纪初发现的放射性现象。,放射性现
13、象:著名物理学家卢瑟夫在本世纪初发现,某些“放射性”元素的原子是不稳定的,并且在已知的一段时间内,有一定比例的原子自然蜕变而形成新元素的原子,且物质的放射性与所存在的物质的原子数成正比。,用N(t)表示时间t时存在的原子数,则:,用来计算半衰期T:,其解为:,与本问题相关的其他知识:,(1)艺术家们应用白铅作为颜料之一,已达两千年以上。白铅中含有微量的放射铅210,白铅是从铅矿中提炼出来的,而铅又属于铀系,其演变简图如下(删去了许多中间环节),(3)从铅矿中提炼铅时,铅210与铅206一起被作为铅留下,而其余物质则有9095%被留在矿渣里,因而打破了原有的放射性平衡。,铀238-45亿年-钍2
14、34-24天-钋234-6/5分-铀234-257亿年-钍230-8万年-镭226-1600年-氡222-19/5天-钋218-3分-铅214-27分-钋214-铅210-20年-铋210-5天-钋210-138天-铅206(一种非放射性物质)注:时间均为半衰期,(2)地壳里几乎所有的岩石中均含有微量的铀。一方面,铀系中的各种放射性物质均在不断衰减,而另一方面,铀又不断地衰减,补充着其后继元素。各种放射性物质(除铀以外)在岩石中处于放射性平衡中。根据世界各地抽样测量的资料,地壳中的铀在铀系中所占平均重量比约为百万分之2.7(一般含量极微)。各地采集的岩石中铀的含量差异很大,但从未发现含量高于2
15、3%的。,简化假定:,本问题建模是为了鉴定几幅不超过300年的古画,为了使模型尽可能简单,可作如下假设:,(1)由于镭的半衰期为1600年,经过300年左右,应用微分方程方法不难计算出白铅中的镭至少还有原量的90%,故可以假定,每克白铅中的镭在每分钟里的分解数是一个常数。,建模:,(1)记提炼白铅的时刻为t=0,当时每克白铅中铅210的分子数为y0,由于提炼前岩石中的铀系是处于放射性平衡的,故铀与铅的单位时间分解数相同。可以推算出当时每克白铅中铅210每分钟分解数不能大于30000个。,以上确定了每克白铅中铅分解数的上界,若画上的铅分解数大于该值,说明画是赝品;但若是小于不能断定画一定是真品。
16、,(2)设t时刻1克白铅中铅210含量为y(t),而镭的单位时间分解数为r(常数),则y(t)满足微分方程:,由此解得:,故:,画中每克白铅所含铅210目前的分解数y(t)及目前镭的分解数r均可用仪器测出,从而可求出y0的近似值,并利用(1)判断这样的分解数是否合理。,Carnegie-Mellon大学的科学家们利用上述模型对部分有疑问的油画作了鉴定,测得数据如下(见表3-1)。,例6 新产品的推广,经济学家和社会学家一直很关心新产品的推销速度问题。怎样建立一个数学模型来描述它,并由此析出一些有用的结果以指导生产呢?以下是第二次世界大战后日本家电业界建立的电饭包销售模型。,设需求量有一个上界,
17、并记此上界为K,记t时刻已销售出的电饭包数量为x(t),则尚未使用的人数大致为Kx(t),于是由统计筹算律:,记比例系数为k,则x(t)满足:,此方程即Logistic模型,解为:,对x(t)求一阶、两阶导数:,x(t)0,即x(t)单调增加。,令x(t0)=0,有,当tt0时,x(t)单调减小。,在销出量小于最大需求量的一半时,销售速度是不断增大的,销出量达到最大需求量的一半时,该产品最为畅销,接着销售速度将开始下降。,所以初期应采取小批量生产并加以广告宣传;从有20%用户到有80%用户这段时期,应该大批量生产;后期则应适时转产,这样做可以取得较高的经济效果。,3.3 为什么要用三级火箭来发
18、射人造卫星,构造数学模型,以说明为什么不能用一级火箭而必须用多级火箭来发射人造卫星?为什么一般都采用三级火箭系统?,1、为什么不能用一级火箭发射人造卫星?,(1)卫星能在轨道上运动的最低速度,R为地球半径,约为6400公里,故引力:,(2)火箭推进力及速度的分析,假设:火箭重力及空气阻力均不计,(2)火箭推进力及速度的分析,最终质量为mP+mS,初始速度为0,所以末速度:,根据目前的技术条件和燃料性能,u只能达到3公里/秒,即使发射空壳火箭,其末速度也不超过6.6公里/秒。目前根本不可能用一级火箭发射人造卫星,火箭推进力在加速整个火箭时,其实际效益越来越低。如果将结构质量在燃料燃烧过程中不断减
19、少,那么末速度能达到要求吗?,2、理想火箭模型,得到:,解得:,理想火箭与一级火箭最大的区别在于,当火箭燃料耗尽时,结构质量也逐渐抛尽,它的最终质量为mP,,所以最终速度为:,只要m0足够大,我们可以使卫星达到我们希望它具有的任意速度。,考虑到空气阻力和重力等因素,估计(按比例的粗略估计)发射卫星要使=10.5公里/秒才行,则可推算出m0/mp约为51,即发射一吨重的卫星大约需要50吨重的理想火箭,3、理想过程的实际逼近多级火箭卫星系统,记火箭级数为n,当第i级火箭的燃料烧尽时,第i+1级火箭立即自动点火,并抛弃已经无用的第i级火箭。用mi表示第i级火箭的质量,mP表示有效负载。,先作如下假设
20、:,考虑二级火箭:,又由假设(ii),m2=kmP,m1=k(m2+mP),代入上式,仍设u=3公里/秒,且为了计算方便,近似取=0.1,则可得:,要使2=10.5公里/秒,则应使:,即k11.2,而:,类似地,可以推算出三级火箭:,在同样假设下:,要使3=10.5公里/秒,则(k+1)/(0.1k+1)3.21,k3.25,而(m1+m2+m3+mP)/mP77。,是否三级火箭就是最省呢?最简单的方法就是对四级、五级等火箭进行讨论。,考虑n级火箭:,记n级火箭的总质量(包含有效负载mP)为m0,在相同的假设下可以计算出相应的m0/mP的值,见表3-2,由于工艺的复杂性及每节火箭都需配备一个推
21、进器,所以使用四级或四级以上火箭是不合算的,三级火箭提供了一个最好的方案。,当然若燃料的价钱很便宜而推进器的价钱很贵切且制作工艺非常复杂的话,也可选择二级火箭。,4、火箭结构的优化设计,3中已经能说过假设(ii)有点强加的味道;现去掉该假设,在各级火箭具有相同的粗糙假设下,来讨论火箭结构的最优设计。,应用(3.11)可求得末速度:,记,则,又,问题化为,在n一定的条件下,求使k1 k2kn最小,解条件极值问题:,或等价地求解无约束极值问题:,可以解出最优结构设计应满足:,火箭结构优化设计讨论中我们得到与假设(ii)相符的结果,这说明前面的讨论都是有效的!,3.4 药物在体内的分布,何为房室系统
22、?,在用微分方程研究实际问题时,人们常常采用一种叫“房室系统”的观点来考察问题。根据研究对象的特征或研究的不同精度要求,我们把研究对象看成一个整体(单房室系统)或将其剖分成若干个相互存在着某种联系的部分(多房室系统)。,房室具有以下特征:它由考察对象均匀分布而成,房室中考察对象的数量或浓度(密度)的变化率与外部环境有关,这种关系被称为“交换”且交换满足着总量守衡。在本节中,我们将用房室系统的方法来研究药物在体内的分布。在下一节中,我们将用多房室系统的方法来研究另一问题。,药物的分解与排泄(输出)速率通常被认为是与药物当前的浓度成正比的,即:,药物分布的单房室模型,单房室模型是最简单的模型,它假
23、设:体内药物在任一时刻都是均匀分布的,设t时刻体内药物的总量为x(t);系统处于一种动态平衡中,即成立着关系式:,药物的输入规律与给药的方式有关。下面,我们来研究一下在几种常见的给药方式下体内药体的变化规律。,情况1 快速静脉注射,与放射性物质类似,医学上将血浆药物浓度衰减一半所需的时间称为药物的血浆半衰期:,情况2 恒速静脉点滴,易见:,对于多次点滴,设点滴时间为T1,两次点滴之间的间隔时间设为T2,则在第一次点滴结束时病人体内的药物浓度可由上式得出。其后T2时间内为情况1。故:,类似可讨论以后各次点滴时的情况,区别只在初值上的不同。第二次点滴起,患者 体内的初始药物浓度不为零。,情况3 口
24、服药或肌注,口服药或肌肉注射时,药物的吸收方式与点滴时不同,药物虽然瞬间进入了体内,但它一般都集中与身体的某一部位,靠其表面与肌体接触而逐步被吸收。设药物被吸收的速率与存量药物的数量成正比,记比例系数为K1,即若记t时刻残留药物量为y(t),则y满足:,因而:,所以:,解得:,从而药物浓度:,图3-9给出了上述三种情况下体内血药浓度的变化曲线。容易看出,快速静脉注射能使血药浓度立即达到峰值,常用于急救等紧急情况;口服、肌注与点滴也有一定的差异,主要表现在血药浓度的峰值出现在不同的时刻,血药的有效浓度保持时间也不尽相同。,图3-9,我们已求得三种常见给药方式下的血药浓度C(t),当然也容易求得血
25、药浓度的峰值及出现峰值的时间,因而,也不难根据不同疾病的治疗要求找出最佳治疗方案。,上述研究是将机体看成一个均匀分布的同质单元,故被称单房室模型,但机体事实上并不是这样。药物进入血液,通过血液循环药物被带到身体的各个部位,又通过交换进入各个器官。因此,要建立更接近实际情况的数学模型就必须正视机体部位之间的差异及相互之间的关联关系,这就需要多房室系统模型。,图3-10表示的是一种常见的两房室模型,其间的k12表示由室I渗透到室II的变化率前的系数,而k21则表示由室II返回室I的变化率前的系数,它们刻划了两室间的内在联系,其值应当用实验测定,使之尽可能地接近实际情况。,当差异较大的部分较多时,可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程建模 微分方程 建模 PPT 课件
链接地址:https://www.31ppt.com/p-5508155.html