《微全分析系统》PPT课件.ppt
《《微全分析系统》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《微全分析系统》PPT课件.ppt(36页珍藏版)》请在三一办公上搜索。
1、7.3微型全分析系统,7.3.1 导言科学仪器在人类的整个科技发展过程中都起到极其重要的作用,这在近代科技发展中反映得尤其突出。分析仪器的发展趋势就是微型化/集成化与便携化。当前,主要为了适应生命科学发展的需要,分析仪器的发展正在出现一个以微型化为主要特征的,带有革命性的重要转折时期。自从Manz和Widmer于1990首次提出微型全分析系统(TAS,miniaturized total analysis system或micro total analysis system)的概念以来,经历了发展初期的冷落和彷徨,在短短的十几年中已发展为当今世界上最前沿的科技领域之一。2001年,英国RSC创
2、刊Lab-on-a-chip(芯片实验室)。2002年,美国Anal.Chem.将TAS列入每两年一次的综述中,标志着它作为分析化学的一个独立领域,已被学术界承认。并将微流控芯片系统作为其主要发展方向。,TAS的目的是通过化学分析设备的微型化与集成化,最大限度地把分析实验室的功能转移到便携的分析设备中,甚至集成到方方寸大小的芯片上。由于这种特征,本领域的一个更为通俗的名称“芯片实验室”(Lab-on-a-chip,LOC)已经被日益地接受。在分析系统微型化与集成化的基础上,TAS的最终目标是实现分析实验室的“个人化”,“家用化”,从而使分析科学及分析仪器从化学实验室解放出来,进入千家万户。微流
3、控芯片(microfluidic chips)是TAS中目前最活跃的领域和发展前沿,它最集中地体现了将分析实验室的功能转移到芯片上的思想,其未来的发展将对上述目标的实现起到非常重要的作用。,Microfluidic chip,Sample preparationMass transportmixingreactionSample injectionseparationdetection,作为分析化学的前沿技术,TAS的迅速发展不仅是该领域科学工作者不懈努力的结果,而且得益于微机电加工(MEMS)、生物化学、材料学、微光学机械等多门学科最新成果的投入。然而,TAS的实际应用目前尚处于初级阶段,对
4、分析系统来讲要求达到既“微”又“全”,从总体上看,还仅仅是目标,离真正实现还有相当大的距离。这些目标的实现必须靠大力发展微流控技术;生物(阵列)芯片虽然是很重要的生物检测手段,但难以在实际分析系统的“微、全”方面发挥优势。一个新学科的发展既需要强大先进的技术支撑,更需要先进的理论指导,TAS在发展中还需要更多的基础理论来更深入地理解和掌握物质在微米尺度流动状态下的行为,例如微米通道中的传质、导热、吸附及微区反应规律等。这些都对相关的理论研究提出了新的挑战!,7.3.2 微型全分析系统及微流控分析芯片发展简史微流控分析芯片的出现在现代分析科学与分析仪器的发展中有其历史的必然性。回顾近40余年发展
5、历史会看到分析系统的自动化微型化趋势早在1950s和1960s即已出现,其发展动力主要来自于环境及材料科学的发展中对更多更准更快地获取物质成分信息的需要。Skeggs创始的间隔式连续流动分析(segmented continuous flow analysis,SCFA)是这一时期发展的有代表性的成功范例。其成功之处在于首次突破了延续了200年的分析化学传统操作中以玻璃器皿和量器为主要工具的操作模式,把分析化学转移到有流体连续流动的管道中,数毫米内径数米长的玻璃或聚合物管道不仅是化学反应的新容器,而且也成为分析操作实现连续化自动化的“传送带”。液体连续驱动手段蠕动泵!,图7.8 SCFA系统示
6、意图(a)和FIA系统示意图(b)S 试样;A空气;R试剂;CR载液,SCFA虽然在溶液分析自动化方面取得了成功,在分析操作所需面积的减少方面也有所贡献,但在设备和试样、试剂消耗及微型化方面却进展不大,分析速度比传统的手工操作也无显著提高。后者是因为限制分析速度的因素是化学反应本身,而非溶液操作过程。Ruzicka和Hansen于1975年提出了FIA。他们在继承连续流动观念的同时,彻底抛弃了SCFA中要求在流动中必须实现物理平衡(完全混合)与化学平衡(反应完全)的观念,去除了管道中同时起间隔与搅拌作用的气泡,提出了在非平衡(不完全混合、不完全反应)条件下实现重现性定量分析的技术条件。他们利用
7、了细管道(1 mm内径)中液体层流状态的可控性与重现性,加上准确的时间(即流速)控制,实现了重现、但非完全的混合状态,并在此基础上来实现重现、而未必完全的化学反应。,这一观念的提出大大地提高了分析速度,使每小时测定上百种试样成为可能,同时也促进了分析系统的微型化。试样与试剂消耗从10 mL水平降低到10200L水平。分析操作也从简单的自动进样-检测发展到包括溶剂萃取、柱分离、沉淀、共沉淀、气-液分离、渗吸等在内的试样多种前处理自动化。经过30年的发展,FIA已经渗透到涉及溶液分析的几乎所有分析化学领域,不仅促进了分析化学自动化和微型化的发展,同时也为TAS的提出铺平了道路。Ruzicka和Ha
8、nsen早在1984年就提出了集成化微管道系统(Integrated microconduit systems,IMCS)的概念,并取得了一定的成功。但由于当时科学技术整体水平的局限性,至少他们当时并未清楚地意识到需要通过多学科交叉来进一步发展他们的学术思想,从而错过了一次重要的发展机遇!,Manz和Widmer则在发展TAS方面要显得更为幸运和富有远见。他们最初的尝试是首先把FIA转移到微加工芯片上。所构建的流动注射光度测定TAS装置为多层芯片结构,主要是采用了单晶硅材料加工。装置的复杂性使人们对其未来发展前景不敢过于乐观。然而当时分析化学另一学科大迅速崛起为TAS提供了一个重要的发展机遇毛
9、细管电泳分离!一方面,毛细管电泳为TAS提供了方便灵活的,在微尺度下电渗驱动手段;另一方面,在芯片上加工的毛细管电泳-TAS又显示出比传统毛细管电泳更优良的性能。Manz与Harrison于1992年合作发表了首篇微加工芯片上完成的毛细管分离的论文,展示了TAS大发展潜力。随后,科学家们迅速把TAS大发展重点定位在基于MEMS技术的平板玻璃或石英芯片上的电渗驱动的毛细管电泳分离微流控系统。,1994年以后,美国一些著名大学研究组的介入使该领域的发展迅速出现高潮。1994年Ramsey group1995年Mathies group1995年 Caliper Technologies 公司199
10、5年Whitesides group1999年惠普公司研制出第一台微流控芯片商品化仪器开始销售2001年 Lab-on-a-chip学术季刊创建,7.3.3 微型全分析系统的分类TAS可分为芯片式与非芯片式两大类。芯片式是发展重点。在芯片式TAS中,依据芯片结构及工作机理又可分为微流控芯片和微阵列(生物)芯片。它们均依托于MEMS技术,目前又都主要服务于生命科学,但前者以微通道网络为结构特征,后者以微探针阵列为结构特征。微阵列芯片目前的主要应用对象是DNA分析,所以也称为DNA或基因芯片。其发展要稍微早于微流控芯片,始于1980s,主要是在生物遗传学领域发展起来的。微流控芯片主要是在分析化学的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微全分析系统 分析 系统 PPT 课件
链接地址:https://www.31ppt.com/p-5508121.html