《建筑与数学》PPT课件.ppt
《《建筑与数学》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《建筑与数学》PPT课件.ppt(103页珍藏版)》请在三一办公上搜索。
1、建筑与数学几何图形,如果说数字的起源是远古人类感知、记录和计算事物“多少”而产生的,那么图形是远古人类感知、描绘和构成事物的形状而产生的。“大漠孤烟直,长河落日圆”,自然界事物最普遍的基本形状是圆形(或近似圆形),蜂巢的六边形也接近圆形。因为自然因素通常是各向同性的,树干长粗,各方向都能长,所以是圆的,不会长成方的。圆是各向同性的,方就不是,所以自然界几乎没有方形,方是人类的创造。方的创造与人类的建筑活动有关,方形可以无缝的连续拼接,因为方形的角是直角(90),四个直角可以无缝地拼成全角(360);立方体既是直角,而且六个面两两平行,可以稳定的无缝的砌筑。,人类是如何发现方的呢?观察自然。除了
2、“落日圆”,还有“孤烟直”。地球上,有一个因素有确定的指向性,就是地球引力(重力),其方向是垂直地面。人类观察到树木垂直生长,手里的东西掉下来,垂直下落,烟往上升等;还观察到水面是平的(所以叫“水平”,也是重力的结果),地面要水平的,桌面也要水平,否则东西放上去要滑动。从垂直、水平就可以逐渐认识到方形平面、立方体和平行表面,自然界有些石头有平行表面(水成岩,也是重力形成的)。,杉树林竖直的树干,水平的湖面,黑格尔说过:“建筑是地球引力的艺术”建筑物的屋盖形状可以三维变化,丰富多彩,“奇形怪状”;墙体可以在平面上“曲折”,而在竖直方向通常是直立的;当屋顶和墙面合成一体,墙也可以是三维变化的形状。
3、但是建筑物的楼层只能是水平的,人们需要在上面活动。,高层建筑体型再复杂,楼层都必须是水平的。确定水平与垂直,至今仍是建筑行业建造活动中最基本和最重要的工作。,迪拜“舞蹈大楼”扎哈,阿布扎比“首都之门”,多伦多“梦露大厦”马岩松,尼罗河每年一次洪水泛滥促成了古埃及文明的产生。洪水到来时,会淹没两岸农田,洪水退后,又会留下一层厚厚的河泥,形成肥沃的土壤。,洪水退去后,原有的土地界限淤没了,需要重新丈量界定。法老政府按土地征税,也要丈量计算土地面积。这就促使了古埃及几何学的发展。4500年前建造的建筑史上的奇迹胡夫金字塔,既是工程学的巨大成就,也表现出古埃及几何学的辉煌。,塔高146.6米,塔身倾角
4、为51度52分,塔底部为边长230米的正方形,边长的误差仅2厘米,直角的误差仅仅12。,几何原本古希腊 欧几里得 最早用公理法则建立起演绎数学体系的典范。古希腊数学的基本精神,是从少数的几个原始假定(定义、公设、公理)出发,通过逻辑推理(因为,所以),得出结论。(并可作为新的可接受的命题)爱因斯坦:“西方科学的发展是以两个伟大成就为基础,那就是:希腊哲学家发明的形式逻辑体系(在欧几里得几何学中),以及通过系统的实验发现有可能找出因果关系(在文艺复兴时期)”。,。,明 徐光启译本,第一个印刷版本,抄写在纸草上的残片,能够无间隙拼连的单一的正多边形只有三种:正三角形、正方形、正六边形。因为它们的内
5、角是360的整分数:360/12=60,360/4=90,360/6=120。,胞体几何(Cell Geometry),六边形在自然界中因为其最接近圆形,是上述三种图形中最符合“经济法则”同样面积,边长最短。,“水立方”(奥运游泳馆)表皮 Skin,尽管每个元泡形状不同,但交点都是三条边相交的“Y”形。,镶嵌图形,通过“拉伸”或“压扁”,等腰三角形、长方形、扁六边形,也能以单一个体无间隙镶嵌。,用不同的正多边形来拼铺整个平面,但每一个交叉点周围的正多边形种类和顺序都相同,叫做半正镶嵌图。半正镶嵌图有8种。,4+6,3+12,4+6+12,3+4+6,3+6,3+6,3+4,3+4,伊斯兰清真寺
6、装饰图案,12,三角形镶嵌 华盛顿美术馆东馆,三角形镶嵌 旧金山圣玛丽教堂,富勒发明的张力杆件穹窿,直径76m。三角形金属网状结构组合成一个球体。,蒙特利尔博览会美国馆 富勒 1967,“以最小追求最大。”(Doing the most with the least.)圆球建筑以“无一定尺寸限制的结构”为概念,不连续的和连续的张力相结合,以最小的材料和最合理的结构、最小的投资创造出最大的内部空间。富勒说,“评判建筑结构优劣的一个好指标,是遮盖一平方米地面所需要的结构重量。常规墙顶设计中,这数字往往是2500公斤每平方米,但网球格顶设计却可以用4公斤每平方米完成。”,富勒是第一个运用六边形和五边
7、形构成的球形薄壳建筑结构,作成能源耗费极低,强度却很强大的建筑物,后来这种结 构被广泛运用,现代运动的足球,就是运用这个结构所制造。这个结构也协助科学家发现了碳C60,后来被称为 富勒烯。,19,可滚动的多面体住宅 波哥达 哥伦比亚 2009年,美国丹佛机场候机楼,慕尼黑奥林匹克体育场,张拉膜结构,慕尼黑奥林匹克体育场张拉膜结构,张拉膜结构常用肥皂膜来比拟。,埃舍尔的几何艺术,摩里茨科奈里斯埃舍尔 M.C.Escher(1898-1972)荷兰艺术家。1922年毕业于Arnhem(阿纳姆)建筑与装饰艺术学院,建筑专业。埃舍尔把自己称为一个“图形艺术家”。,埃舍尔的镶嵌图形,埃舍尔的镶嵌图形,埃
8、舍尔的镶嵌图形,圆之界限 1959,方之界限 1959,埃舍尔的镶嵌图形,埃舍尔的“迷惑的图画”,埃舍尔“迷惑的图画”,瀑布 1961,埃舍尔“迷惑的图画”,现实 1953,对称 在数学上,将两种状态间通过确定的规则对应起来的关系,称为从一种状态到另一种状态的变换。如果某一现象(或系统)在某种变换下不改变,则说该现象(或系统)具有该变换所对应的对称性。圆对过圆心且与圆所在平面垂直的直线具有旋转变换的对称性,并对直径具有镜像反射变换的对称性。无论怎样复杂的转动都不能把左手转成右手。围棋盘(方格网,规则网格)具有平移变换的对称性;图形的角度和长度比具有相似变换的对称性;以相等的时间间隔平移的对称性
9、,通常称为周期性;一个静止的物体具有任意时间平移的对称性。内特尔(Noether)定理:如果运动规律在某一变换下具有对称性,必相应存在一个守恒定律。例如:物理定律不随时间变化,能量就守恒;作用量在空间平移下保持不变,动量就守恒;作用量在空间旋转下保持不变,角动量就守恒;,复合变换下的对称性 左图是以图形的垂直中线作镜像反射变换,并作“黑白颜色互变”变换。,对称是自然界最普遍的形态,对称是人类文明开始的形态,对称是人类文明开始的形态,三星堆和金沙遗址出土的“太阳”器,圆形对称。,对称 庄重、稳定、平衡,对称布局会突出和加强中轴线,拓扑几何“橡皮几何”,以色列的一位城市规划学者在清华建筑学院做讲座
10、,说到老北京的街道都是南北正交,而中东的城市街道弯曲。他讲完,我向同学讲,两者的街道形态在拓扑上“同构”的。每一个交叉口都是两条街道相交。,一个几何图形任意“拉扯”(就像画在橡皮上),只要不发生割裂和粘接,可做任意变形,称为“拓扑变形”。两个图形通过“拓扑变形”可以变得相同,则称这两个图形是“拓扑同构”。拓扑几何研究几何图形在一对一连续变换中了不变的性质。不考虑几何图形的尺寸、面积、体积等度量性质和具体形状。,此图和上面两图同构,此图和上面两图不同构,放射形街道,方格形街道,上述圆、三角形、方形和任意封闭曲线同构 在拓扑变换中封闭围线的“内”和“外”的区分不变,边线上点的顺序不变。,上述四个图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 建筑与数学 建筑 数学 PPT 课件
链接地址:https://www.31ppt.com/p-5506112.html