《常见优化模型》PPT课件.ppt
《《常见优化模型》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《常见优化模型》PPT课件.ppt(22页珍藏版)》请在三一办公上搜索。
1、常见优化模型,东北大学应用数学王琪,常见优化模型,线性规划整数规划非线性规划,线性规划,线性规划的标准形式:,可以采用的解决方法:单纯性法Matlab函数:linprog(),问题一 加工费用最低,问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?,解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别
2、为x4、x5、x6。可建立以下线性规划模型:,用MATLAB优化工具箱解线性规划,命令:x=linprog(c,A,b),2、模型:min z=cX,命令:x=linprog(c,A,b,Aeq,beq),注意:若没有不等式:存在,则令A=,b=.,3、模型:min z=cX,VLBXVUB,命令:1 x=linprog(c,A,b,Aeq,beq,VLB,VUB)2 x=linprog(c,A,b,Aeq,beq,VLB,VUB,X0),注意:1 若没有等式约束:,则令Aeq=,beq=.2其中X0表示初始点,4、命令:x,fval=linprog()返回最优解及处的目标函数值fval.,解
3、 编写M文件xxgh1.m如下:c=-0.4-0.28-0.32-0.72-0.64-0.6;A=0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08;b=850;700;100;900;Aeq=;beq=;vlb=0;0;0;0;0;0;vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub),解:编写M文件xxgh2.m如下:c=6 3 4;A=0 1 0;b=50;Aeq=1 1 1;beq=120;vlb=30;0;20;x,fval=linpr
4、og(c,A,b,Aeq,beq,vlb),投资的收益和风险,二、基本假设和符号规定,三、模型的建立与分析,1.总体风险用所投资的Si中最大的一个风险来衡量,即max qixi|i=1,2,n,4.模型简化:,四、模型1的求解,由于a是任意给定的风险度,到底怎样给定没有一个准则,不同的投资者有不同的风险度。我们从a=0开始,以步长a=0.001进行循环搜索,编制程序如下:,a=0;while(1.1-a)1 c=-0.05-0.27-0.19-0.185-0.185;Aeq=1 1.01 1.02 1.045 1.065;beq=1;A=0 0.025 0 0 0;0 0 0.015 0 0;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 常见优化模型 常见 优化 模型 PPT 课件
链接地址:https://www.31ppt.com/p-5503806.html