《太阳电池基础》PPT课件.ppt
《《太阳电池基础》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《太阳电池基础》PPT课件.ppt(133页珍藏版)》请在三一办公上搜索。
1、Introduction to Solar Photovoltaic Technology,太阳能光伏技术概论,培训教师:冯少纯,第一节,1.太阳电池发展史,太阳能,太阳是距离地球最近的恒星,直径约1390000km,体积和质量是地球的130万倍和33万倍。表面温度约为5800K,主要由氢和氦组成。其中氢占80%,氦占19%。太阳内部处于高温高压状态,不停进行着热核反应,由氢聚变成氦,并将质量转化为能量。青藏高原是我国太阳能资源最好的地区,而四川盆地云雨天气多,太阳能资源相对较差。,太阳能,当太阳光照射到地球时,一部分光线被反射或散射,一部分光线被吸收,只有约70%的光线能到达地球表面。到达地
2、球表面的太阳光一部分被表面物体所吸收,另外一部分又被反射回大气层。,太阳电池发展史,太阳能光伏发电最核心的器件太阳电池。,从1839年法国科学家E.Becquerel发现液体的光生伏特效应(简称光伏现象)算起,太阳能电池已经经过了160多年的漫长的发展历史。从总的发展来看,基础研究和技术进步都起到了积极推进的作用。对太阳电池的实际应用起到决定性作用的是美国贝尔实验室关于单晶硅太阳电池的研制成功,在太阳电池发展史上起到里程碑的作用。至今为止,太阳能电池的基本结构和机理没有发生改变。,太阳电池发展史,太阳电池后来的发展主要是薄膜电池的研发,如非晶硅太阳电池、CIS太阳电池、CdTe太阳电池和纳米燃
3、料敏化太阳电池等,此外主要的是生产技术的进步,如丝网印刷、多晶硅太阳电池生产工艺的成功开发,特别是氮化硅薄膜的减反射和钝化技术的建立以及生产工艺的高度自动化等。,太阳电池发展史,回顾历史有利于了解光伏技术的发展历程,按时间的发展顺序,将于太阳电池发展有关的历史事件汇总如下:,1839年法国实验物理学家E.Becquerel发现液体的光生伏特效应,简称为光伏效应。1877年W.G.Adams和R.E.Day研究了硒(Se)的光伏效应,并制作第一片硒太阳能电池。1883年美国发明家Charles Fritts描述了第一块硒太阳能电池的原理。,太阳电池发展史,1904年Hallwachs发现铜与氧化
4、亚铜(Cu/Cu2O)结合在一起具有光敏特性;德国物理学家爱因斯坦(Albert Einstein)发表关于光电效应的论文。1918年波兰科学家Czochralski发展生长单晶硅的提拉法工艺。1921年德国物理学家爱因斯坦由于1904年提出的解释光电效应的理论获得诺贝尔(Nobel)物理奖。贝尔(Bell)实验室研究人员D.M.Chapin,C.S.Fuller和G.L.Pearson报道4.5%效率的单晶硅太阳能电池的发现,几个月后效率达到6%。,太阳电池发展史,2000年世界太阳能电池年产量超过399MW;X.Wu,R.G.Dhere,D.S.Aibin等报道碲化镉(CdTe)太阳能电池
5、效率达到16.4%;单晶硅太阳能电池售价约为3USD/W。2002年世界太阳能电池年产量超过540MW;多晶硅太阳能电池售价约为2.2USD/W。,预计未来世界太阳,2020年太阳能发电成本与化石能源成本相接近,德国可再生能源占20%。2030年太阳能发电达到10%20%;德国将关闭所有的核电站。,能发电产业的发展,预计未来世界太阳,2050年世界太阳能发电利用将占世界能源总能耗30%50%份额。2100年以煤、石油、天然气为代表的化石能源基本枯竭,人类主要利用太阳能、氢能、风能、生物质能等洁净可再生能源。人类将充分利用太阳能发电。,能发电产业的发展,中国太阳能发电发展史,1958年我国开始研
6、制太阳能电池。1959年中国科学院半导体研究所研制成功第一片具有实用价值的太阳能电池。1971年3月在我国发射的第二颗人造卫星科学实验卫星实践一号上首次应用由天津电源研究所研制的太阳能电池。1979年我国开始利用半导体工业废次硅材料生产单晶硅太阳能电池。,中国太阳能发电发展史,我国大陆包括正在建设的太阳电池或太阳能电池组件产量可达10MW以上的厂家有很多,如:无锡尚德,保定天威英利,宁波太阳能,南京中电光伏,上海太阳能科技,云南天达和常州天合等。我国已成为世界重要的光伏工业基地之一,初步形成一个以光伏工业为源头的高科技光伏产业链。,随着我国“可再生能源法”的实施,我国太阳能光伏发电将得到快速发
7、展。预计在35年内我国在太阳能光伏电池研发、生产、应用产品开发将形成一个世界级的产业基地,并将在国际太阳能光伏工业产业中占据重要的地位。,太阳电池分类,晶体硅太阳电池(包括单晶硅和多晶硅太阳电池)非晶硅太阳电池薄膜太阳电池化合物太阳电池有机半导体太阳电池,第二节,2.半导体材料与理论,半导体定义,固体按导电性能的高低可以分为:,它们的导电性能不同,是因为它们的能带结构不同。,半导体种类,按照成分可分为:有机半导体 无机半导体(元素半导体、化合物半导体)按照晶体结构可分为:非晶体半导体 晶体半导体(单晶、多晶)按照特性、功能可分为:微电子材料、光电子材料、传感材料.,半导体种类,元素半导体共有1
8、2种,包括 硅、锗、硼、碳、灰锡、磷、灰砷、灰锑、硫、硒、碲、碘。其中只有硅、锗和硒在实际生产中得到应用。,晶体概念,晶体:有规则对称的几何外形;物理性质(力、热、电、光)各向异性;有确定的熔点;微观上,分子、原子或离子呈有规则的周期性 排列,形成空间点阵(晶格)。,多晶结构,晶界,单晶结构,硅原子结构,硅原子结构,简化模型,硅,一种四价的非金属元素,在自然界分布极广,地壳中约含27.6%,主要以二氧化硅和硅酸盐的形式存在。元素符号Si,相对原子量为28.08653,在元素周期表中的lVA族(第四主族),第三周期。,每个原子的价电子分别与相邻的四个原子的价电子组成共价键,在空间形成排列有序的单
9、晶体结构 纯净的单晶半导体称为本征半导体。,本征半导体,价电子(热激发),自由电子-空穴对,复合,平衡,本征半导体中,本征半导体,(1)在半导体中有两种载流子,这就是半导体和金属导电原理的 本质区别,a.电阻率大,(2)本征半导体的特点,b.导电性能随温度变化大,本征半导体不能在半导体器件中直接使用,本征半导体,在外电场作用下,电子的定向移动形成电流,在外电场作用下,空穴的定向移动形成电流,本征半导体缺点 1、电子浓度=空穴浓度;2、载流子少,导电性差,温度稳定性差!不适宜制造半导体器件,通常要掺入一些杂质来提高导电能力。,本征半导体,杂质半导体,杂质半导体(Impurity Semicond
10、uctor):在纯净的半导体中适当掺入杂质,可提高半导体的导电能力能改变半导体的导电机制,按导电机制,杂质半导体可分为n型(电子导电)和p型(空穴导电)两种。,杂质半导体,n型半导体,图中掺入的五价P原子在晶体中替代Si的位置,构成与Si相同的四电子结构,多出的一个电子在杂质离子的电场范围内运动。,杂质半导体,磷原子,硅原子,多余电子,N型半导体,形成:本征半导体中掺入五价杂质原子,如磷(P)。载流子:自由电子是多数载流子,空穴是少数载流子。,简化图,杂质半导体,杂质半导体,(2)P型半导体,四价的本征半导体 Si、Ge等,掺入少量三价的杂质元素(如B、Ga、In等)形成空穴型半导体,也称p型
11、半导体。,图中在硅晶体中掺入少量的硼,晶体点阵中的某些半导体原子被杂质取代,硼原子的最外层有三个价电子,与相临的半导体原子形成共价键时产生一个空穴。这个空穴可能吸引束缚电子来填补,使得硼原子成为不能移动的带负电的离子。,P型半导体,形成:本征半导体中掺入三价杂质原子,如硼(B)等。载流子:空穴是多数载流子,自由电子是少数载流子。,简化图,(a)结构示意图 图1-5 P型半导体的结构,杂质半导体,几个基本概念:本征半导体、杂质半导体自由电子、空穴多数载流子、少数载流子N型半导体、P型半导体无论是N型还是P型半导体都是电中性,对外不显电性。,杂质半导体,多子的浓度决定于掺杂原子的浓度少子的浓度决定
12、于温度,P-N结,1、P-N结的形成,在一块n型半导体基片的一侧掺入较高浓度的受主杂质,由于杂质的补偿作用,该区就成为p型半导体。,在半导体内,由于掺杂的不同,使部分区域是n型,另一部分区域是p型,它们交界处的结构称为p-n结(P-N junction)。,由于区的电子向P区扩散,P区的空穴向N区扩散,在p型半导体和n型半导体的交界面附近产生了一个由np的电场,称为内建场。,P-N结,内建场大到一定程度,不再有净电荷的流动,达到了新的平衡。,内建场阻止电子和空穴进一步扩散,记作。,P-N结,PN结的形成,在交界面,由于两种载流子的浓度差,出现扩散运动。,P,N,P-N结,PN结的形成,在交界面
13、,由于扩散运动,经过复合,出现空间电荷区。,P,N,P-N结,稳定后,n区相对p区有电势差U0(n比p高)。p-n 结也称势垒区。,电子电势能曲线,它阻止P区带正电的空穴进一步向N区扩散;,也阻止N区带负电的电子进一步向P区扩散。,P-N结,PN结的形成,PN结,当扩散电流等于漂移电流时,达到动态平衡,形成PN结。,P-N结,在P型半导体和N型半导体结合后,由于N型区内电子很多而空穴很少,而P型区内空穴很多电子很少,在它们的交界处就出现了电子和空穴的浓度差别。这样,电子和空穴都要从浓度高的地方向浓度低的地方扩散。于是,有一些电子要从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。它们扩
14、散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。半导体中的离子不能任意移动,因此不参与导电。这些不能移动的带电粒子在P和N区交界面附近,形成了一个很薄的空间电荷区,就是所谓的PN结。,文字总结:PN结的形成,P-N结,扩散越强,空间电荷区越宽。在空间电荷区,由于缺少多子,所以也称耗尽层。在出现了空间电荷区以后,由于正负电荷之间的相互作用,在空间电荷区就形成了一个内电场,其方向是从带正电的N区指向带负电的P区。显然,这个电场的方向与载流子扩散运动的方向相反它是阻止扩散的。,文字总结:PN结的形成,P-N结,另一方面,这个电场将使N区的少数载流子空穴
15、向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,因此,漂移运动的结果是使空间电荷区变窄。当漂移运动达到和扩散运动相等时,PN结便处于动态平衡状态。内电场促使少子漂移,阻止多子扩散。最后,多子的扩散和少子的漂移达到动态平衡。,文字总结:PN结的形成,载流子浓度差,复合,内电场阻碍多子扩散帮助少子漂移,扩散漂移动态平衡,内电场,多子扩散,产生空间电荷区,P区,N区,PN结稳定,PN结的形成过程,PN结,P-N结的单向导电性,由
16、于p-n结处阻挡层的存在,把电压加到p-n结两端时,阻挡层处的电势差将发生变化。,(1)正向偏压,P-N结的单向导电性,外加电压越大,正向电流也越大,而且呈非线性的伏安特性。,P-N结的单向导电性,(2)负向偏压,在p-n结的p型一端接电源负极,另一端接正极,这叫对p-n结加反向偏压。此时 与 同向,阻挡层势垒增大、变宽,不利于空穴向n型区、电子向p型区移动。没有正向电流。,但是,由于少数载流子的存在,在外电场作用下,会形成很弱的反向电流,称为漏电流(A级)。,P-N结的单向导电性,当反向电压超过某一数值后,反向电流会急剧增大,这称为反向击穿。,由上可知,p-n结可以作成具有整流、开关等作用的
17、晶体二极管(diode)。,P-N结的反向击穿,P-N结的单向导电性,PN结外加正向电压时处于导通状态,加正向电压是指P端加正电压,N端加负电压,也称正向接法或正向偏置。,P-N结的单向导电性,内电场,外电场,外电场抵消内电场的作用,使耗尽层变窄,形成较大的扩散电流。,P-N结的单向导电性,PN结外加反向电压时处于截止状态,外电场和内电场的共同作用,使耗尽层变宽,形成很小的漂移电流。,P-N结的单向导电性,PN结的伏安特性,PN结的电流方程为,其中,IS 为反向饱和电流,UT26mV,,半导体的导电特性,1、掺杂特性,掺入微量的杂质(简称掺杂)能显著地改变半导体的导电能力。杂质含量改变能引起载
18、流子浓度变化,半导体材料电阻率随之发生很大变化。在同一种材料中掺入不同类型的杂质,可以得到不同导电类型的半导体材料。,半导体的导电特性,2、温度特性,温度也能显著改变半导体材料的导电性能。一般来说,半导体的导电能力随温度升高而迅速增加,即半导体的电阻率具有负的温度系数,而金属的电阻率具有正当温度系数,且其随温度的变化很慢。,半导体的导电特性,3、环境特性,半导体的导电能力还会随光照而发生变化(称为光电导现象)。此外半导体的导电能力还会随所处环境的电场、磁场、压力和气氛的作用等而变化。,半导体的特性应用,1、热敏电阻,根据半导体的电阻值随温度的升高而迅速下降的现象制成的半导体器件,称为热敏电阻(
19、thermosensitive resistance)。,热敏电阻有体积小,热惯性小,寿命长等优点,已广泛应用于自动控制技术。,半导体的特性应用,2、光敏电阻,半导体硒,在照射光的频率大于其红限频率时,它的电阻值有随光强的增加而急剧减小的现象。利用这种特性制成的半导体器件称为光敏电阻(photosensitive resistance)。,光敏电阻是自动控制、遥感等技术中的一个重要元件。,半导体的特性应用,3、温差热电偶,把两种不同材料的半导体组成一个回路,并使两个接头具有不同的温度,会产生较大的温差电动势,称为半导体温差热电偶。温度每差一度,温差电动势能够达到、甚至超过1毫伏。,利用半导体温
20、差热电偶可以制成温度计,或小型发电机。,半导体的特性应用,4、集成电路,p-n结的适当组合可以作成具有放大功能的晶体三极管(trasistor),以及其他各种晶体管。进一步可将它们作成集成电路、大规模集成电路和超大规模集成电路。,半导体的特性应用,1947年12月23日,美国贝尔实验室的半导体小组,W.Shockley,J.Bardeen,W.Brattain做出了世界上第一只具有放大作用的点接触型晶体三极管。,1956年小组的三位成员获诺贝尔物理奖。,人类历史上的第一个晶体管,半导体的特性应用,人类历史上的第一块集成电路,1958年9月 Texas InstrumentsJack Kilby
21、2000年诺贝尔奖,半导体的特性应用,后来,晶体管又从点接触型发展到面接触型。,晶体管比真空电子管体积小,重量轻,成本低,可靠性高,寿命长,很快成为第二代电子器件。,半导体的特性应用,INMOS T900 微处理器,每一个集成块(图中一个长方形部分)约为手指甲大小,它有300多万个三极管,半导体的特性应用,1971年制造的第一个单片机Intel 4004,2300个晶体管10微米技术,640bytes,108KHz,Pentium IV5500万个晶体管0.13微米技术,光生伏特效应,当P型半导体和N型半导体结合在一起,形成PN结时,由于多数载流子的扩散,形成了空间电荷区,并形成一个不断增强的
22、从N型半导体指向P型半导体的内建电场。导致多数载流子反向漂移。达到平衡后,扩散产生的电流和漂移产生的电流相等。如果光照在PN结上,而且光能大于PN结的禁带宽度,则在PN结附近将产生电子 空穴对。由于内建电场的存在,产生的非平衡载流子将向空间电荷区两端漂移,产生光生电势(电压),破坏了原来的平衡。如果将PN结与外电路相连,则电路中出现电流,称为光生伏特现象或光生伏特效应。,PN结,光生伏特效应,当光照射在p-n结上时,光子会产生电子-空穴对。,e+h+,由光照射,使p-n结产生电动势的现象称光生伏特效应。利用太阳光照射p-n结产生电池的装置叫太阳能电池。太阳能电池应用前景十分广泛。,PN结的制备
23、,P38,第三节,3.硅片的生产,硅材料,太阳电池产品需要高纯的原料,对于太阳电池要求硅材料的纯度约是99.99%99.9999%。而对半导体技术要求的纯度还要高几个数量级。硅材料是用二氧化硅(SiO2)作为生产原料,将其熔化并除去杂质就可制取粗级硅,也称冶金级硅、工业硅、金属硅。,硅材料,多晶硅按纯度分类可以分为冶金级(工业硅)、太阳能级、电子级。,1、冶金级硅(Metallurgical Grade,MG):是硅的氧化物在电弧炉中被碳还原而成。一般含Si为9099%。,2、太阳级硅(Solar Grade,SG):纯度介于冶金级硅与电子级硅之间,至今未有明确界定。一般认为含Si在99.99
24、99.9999(46个9),3、电子级硅(Electronic Grade,EG):一般要求含Si99.9999%以上,超高纯达到99.9999999%99.999999999%(911个9)。其导电性介于 10-41010 欧厘米。,太阳能级硅,太阳能级硅是电子级硅生产过程的副产品,按照质量排序主要包括以下几种:电子级硅的次级产品等外品硅大块料小块料单晶硅锭头尾料厂内循环返回料埚底料其它来源的硅料 杂质含量:10100 ppm 电阻率:0.51 ohm-cm以上(B、P),(1)少子寿命(ms)(2)单位硅料消耗(克硅/瓦或吨硅/兆瓦)(3)太阳电池组件总成本,评价因素:,太阳能级硅,现在的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 太阳电池基础 太阳电池 基础 PPT 课件
链接地址:https://www.31ppt.com/p-5490520.html