《型传感器》PPT课件.ppt
《《型传感器》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《型传感器》PPT课件.ppt(151页珍藏版)》请在三一办公上搜索。
1、第11章 新型传感器,11.1 集成温度传感器11.2 磁敏传感器11.3 光纤传感器11.4 传感器在机器人中的应用,集成温度传感器,一、所谓集成传感器,就是在一块极小的半导体芯片上集成了包括温度敏感器件、信号放大电路、温度补偿电路、基准电源电路等在内的各个单元,它使传感器和集成电路融为一体。,集成温度传感器与传统的热电阻、热电偶温度计相比最大的优点是:线性度好、灵敏度高、输出信号大,且规范化标准化,二、优点,集成温度传感器按信号输出形式分为:电流型、电压型,集成温度传感器,三、AD590系列集成温度传感器,AD590是电流型集成温度传感器,其输出电流与环境绝对温度成正比,所以可以直接制成绝
2、对温度仪。AD590有I、J、K、L、M等型号系列,采用金属管壳封装。,外形图,电路符号,电源+,电流输出端,美国DALLAS公司生产的单总线数字温度传感器DS1820,可把温度信号直接转换成串行数字信号供微机处理。由于每片DS1820含有唯一的串行序列号,所以在一条总线上可挂接任意多个DS1820芯片。从DS1820读出的信息或写入DS1820的信息,仅需要一根口线(单总线接口)。读写及温度变换功率来源于数据总线,总线本身也可以向所挂接的DS1820供电,而无需额外电源。DS1820提供九位温度读数,构成多点温度检测系统而无需任何外围硬件。,数字输出型IC温度传感器,、DS1820的特性单线
3、接口:仅需一根口线与MCU连接;无需外围元件;由总线提供电源;测温范围为-55125,精度为0.5;九位温度读数;A/D变换时间为200ms;用户可以任意设置温度上、下限报警值,且能够识别具体报警传感器。,DS 1820,1,2,3,GND,I/O,VDD,(a)PR35封装,DS1820的管脚排列,DS1820,1,2,3,4,5,6,7,8,I/O,GND,(b)SOIC封装,NC,NC,NC,NC,VDD,NC,2、DS1820引脚及功能 GND:地;VDD:电源电压 I/O:数据输入输出脚(单线接口,可作寄生供电),3、DS1820的工作原理 图为DS1820的内部框图,它主要包括寄生
4、电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。,存储器控制逻辑,64bitROM和单线接口,电源检测,温度传感器,高温触发器,低温触发器,8位CRC触发器,存储器,DS1820内部结构图,寄生电源由两个二极管和寄生电容组成。电源检测电路用于判定供电方式。寄生电源供电时,电源端接地,器件从总线上获取电源。在I/O线呈低电平时,改由寄生电容上的电压继续向器件供电。寄生电源两个优点:检测远程温度时无需本地电源;缺少正常电源时也能读ROM。若采用外部电
5、源,则通过二极管向器件供电。,(1)寄生电源,DS1820内部的低温度系数振荡器能产生稳定的频率信号f0,高温度系数振荡器则将被测温度转换成频率信号f。当计数门打开时,DS1820对f0计数,计数门开通时间由高温度系数振荡器决定。芯片内部还有斜率累加器,可对频率的非线性予以补偿。测量结果存入温度寄存器中。一般情况下的温度值应为9位(符号点1位),但因符号位扩展成高8位,故以16位补码形式读出,表3.4-1给出了DS1820温度和数字量的对应关系。,温度测量电路,斜率累加器,计数器1,计数器2,低温度系数晶振,高温度系数晶振,=0,=0,预置,温度寄存器,预置,比较,停止,置位/清零,加1,(2
6、)温度测量原理,DS1820测量温度时使用特有的温度测量技术,如图。,集成温度传感器,五、温度变送器,温度变送器有三个品种:直流毫伏变送器、热电偶温度变送器和热电阻温度变送器。,将输入的直流毫伏信号及被测温度信号转换为4mA20mA DC和IV5VDC输出的统一信号的装置称为变送器。这三种变送器在线路结构上都分为量程单元和放大单元两个部分,其中放大单元是通用的,量程单元随品种、测量范围而变。,所谓变送器,集成温度传感器,五、温度变送器,温度变送器有三个品种:直流毫伏变送器、热电偶温度变送器和热电阻温度变送器。,集成温度传感器,五、温度变送器,温度变送器有三个品种:直流毫伏变送器、热电偶温度变送
7、器和热电阻温度变送器。,集成温度传感器,五、温度变送器,温度变送器有三个品种:直流毫伏变送器、热电偶温度变送器和热电阻温度变送器。,集成温度传感器,六、一体化温度变送器,一体化温度变送器是温度传感元件与变送电路的紧密结合体。它是一种小型固态化温度变送器,与热电偶或热电阻安装在一起,不需要补偿导线或延长线,由直流24V供电,用两线制方式连接,输出4mA20mADC标准信号。其原理框图如下。,一体化温度变送器原理框图,温度传感器典型应用,一、金属表面温度的测量,二、热电偶炉温控制系统,温度传感器典型应用,三、采用集成温度传感器的数字式温度计,温度传感器典型应用,四、电动机保护器,磁敏传感器,磁敏传
8、感器是基于磁电转换原理的传感器。早在1856年和1879年就发现了磁阻效应和霍尔效应,但作为实用的磁敏传感器则产生于半导体材料发现之后。60年代初,西门子公司研制出第一个实用的磁敏元件;1966年又出现了铁磁性薄膜磁阻元件;1968年索尼公司研制成性能优良、灵敏度高的磁敏二极管;1974年美国韦冈德发明了双稳态磁性元件。目前上述磁敏元件已得到广泛的应用。磁敏传感器主要有磁敏电阻、磁敏二极管、磁敏三极管和霍尔式磁敏传感器。,6.1 磁敏电阻器 磁敏电阻器(Magnetic Resistance)是基于磁阻效应的磁敏元件,也称MR元件。磁敏电阻的应用范围比较广,可以利用它制成磁场探测仪、位移和角度
9、检测器、安培计以及磁敏交流放大器等。一、磁阻效应 若给通以电流的金属或半导体材料的薄片加以与电流垂直或平行的外磁场,则其电阻值就增加。称此种现象为磁致电阻变化效应,简称为磁阻效应。,在外加磁场作用下,某些载流子受到的洛伦兹力比霍尔电场作用力大时,它的运动轨迹就偏向洛伦兹力的方向;这些载流子从一个电极流到另一个电极所通过的路径就要比无磁场时的路径长些,因此增加了电阻率。当温度恒定时,在磁场内,磁阻与磁感应强度 B 的平方成正比。如果器件只是在电子参与导电的简单情况下,理论推导出来的磁阻效应方程为,式中 B 磁感应强度为B时的电阻率;0 零磁场下的电阻率;电子迁移率;B 磁感应强度。当电阻率变化为
10、B 0时,则电阻率的相对变化为:,/0=0.2732B2=K2B2,由此可知,磁场一定时电子迁移率越高的材料(如InSb、InAs和NiSb等半导体材料),其磁阻效应越明显。,当材料中仅存在一种载流子时磁阻效应几乎可以忽略,此时霍耳效应更为强烈。若在电子和空穴都存在的材料(如InSb)中,则磁阻效应很强。磁阻效应还与磁敏电阻的形状、尺寸密切相关。这种与磁敏电阻形状、尺寸有关的磁阻效应称为磁阻效应的几何磁阻效应。若考虑其形状的影响。电阻率的相对变化与磁感应强度和迁移率的关系可表达为,长方形磁阻器件只有在L(长度)b(宽度)的条件下,才表现出较高的灵敏度。把Lb的扁平器件串联起来,就会得到零磁场电
11、阻值较大、灵敏度较高的磁阻器件。,为形状效应系数。,图(a)为器件长宽比lwl的纵长方形片,由于电子运动偏向一侧,必然产生霍尔效应,当霍尔电场EH对电子施加的电场力fE和磁场对电子施加的洛伦兹力fL平衡时,电子运动轨迹就不再继续偏移,所以片内中段电子运动方向和长度l的方向平行,只有两端才是倾斜的。这种情况电子运动路径增加得并不显著,电阻增加得也不多。,L,b,B,B,几何磁阻效应,I,I,(a),(b),图(b)是在Lb长方形磁阻材料上面制作许多平行等间距的金属条(即短路栅格),以短路霍尔电势,这种栅格磁阻器件如图(b)所示,就相当于许多扁条状磁阻串联。所以栅格磁阻器件既增加了零磁场电阻值、又
12、提高了磁阻器件的灵敏度。实验表明,对于InSb材料,当B=1T时,电阻可增大10倍(因为来不及形成较大的霍尔电场EH)。,磁敏电阻通常使用两种方法来制作:一种是在较长的元件片上用真空镀膜方法制成,如图(a)所示的许多短路电极(光栅状)的元件;另一种是由InSb和NiSb构成的共晶式半导体(在拉制 InSb单晶时,加入1的Ni,可得InSb和NiSb的共晶材料)磁敏电阻。这种共晶里,NiSb呈具有一定排列方向的针状晶体,它的导电性好,针的直径在1m左右,长约100m,许多这样的针横向排列,代替了金属条起短路霍尔电压的作用。由于InSb的温度特性不佳,往往在材料中加人一些N型碲或硒,形成掺杂的共晶
13、,但灵敏度要损失一些。在结晶制作过程中有方向性地析出金属而制成磁敏电阻,如上图(b)所示。除此之外,还有圆盘形,中心和边缘处各有一电极,如上图(c)所示。磁敏电阻大多制成圆盘结构。,二、磁敏电阻的结构,各种形状的磁敏电阻,其磁阻与磁感应强度的关系如右图所示。由图可见,圆盘形样品的磁阻最大。磁敏电阻的灵敏度一般是非线性的,且受温度影响较大;因此,使用磁敏电阻时必须首先了解如下图所示的持性曲线。然后,确定温度补偿方案。,磁阻元件的电阻值与磁场的极性无关,它只随磁场强度的增加而增加,磁阻元件的温度特性不好,在应用时,一般都要设计温度补偿电路。,磁敏电阻器的应用:,1 作控制元件 可将磁敏电阻用于交流
14、变换器、频率变换器、功率电压变换器、磁通密度电压变换器和位移电压变换器等电路中作控制元件。2作计量元件 可将磁敏电阻用于磁场强度测量、位移测量、频率测量和功率因数测量等诸多方面。3作开关电路 在接近开关、磁卡文字识别和磁电编码器等方面。4作运算器 可用磁敏电阻在乘法器、除法器、平方器、开平方器、立方器和开立方器等方面使用。5作模拟元件 可在非线性模拟、平方模拟、立方模拟、三次代数式模拟和负阻抗模拟等方面使用。,磁敏电阻的应用,根据铁磁物体对地磁的扰动,可检测车辆的存在,可用于包括自动开门,路况监测,停车场检测,车辆位置监测,红绿灯控制等。,锑化铟(InSb)磁阻传感器在磁性油墨鉴伪点钞机中的应
15、用 InSb伪币检测传感器安装在光磁电伪币检测机上,其工作过程如上图所示,电路原理图如下图所示。,电路工作原理图,InSb伪币检测传感器工作原理与输出特性,当纸币上的磁性油墨没有进入位置1时,设输出变化为零,如果进入位置1,由于R2电阻增大,则输出变化为0.3mV左右;如果进入位置3时,则仍为0;如果进入位置4,则为-0.3mV,如果进入位置5,则仍为0,就这样产生输出特性,经过放大、比较、脉冲展宽、显示,就能检测伪币,达到理想效果。,半导体InSb磁敏无接触电位器 半导体InSb磁敏无接触电位器是半导体InSb磁阻效应的典型应用之一。与传统电位器相比,它具有无可比拟的优点:无接触电刷、无电接
16、触噪音、旋转力矩小、分辨率高、高频特性好、可靠性高、寿命长。半导体InSb磁敏无接触电位器是基于半导体InSb磁阻效应原理,由半导体InSb磁敏电阻元件和偏置磁钢组成;其结构与普通电位器相似。由于无电刷接触,故称无接触电位器。,该电位器的核心是差分型结构的两个半园形磁敏电阻;它们被安装在同一旋转轴上的半园形永磁钢上,其面积恰好覆盖其中一个磁敏电阻;随着旋转轴的转动,磁钢覆盖于磁阻元件的面积发生变化,引起磁敏电阻值发生变化,旋转转轴,即能调节其阻值。其工作原理和输出电压随旋转角度变化的关系曲线如图所示。,6.3 磁敏二极管和磁敏三极管 磁敏二极管、三极管是继霍耳元件和磁敏电阻之后迅速发展起来的新
17、型磁电转换元件。霍尔元件和磁敏电阻均是用N型半导体材料制成的体型元件。磁敏二极管和磁敏三极管是PN结型的磁电转换元件,它们具有输出信号大、灵敏度高(磁灵敏度比霍耳元件高数百甚至数千倍)、工作电流小、能识别磁场的极性、体积小、电路简单等特点,它们比较适合磁场、转速、探伤等方面的检测和控制。,一、磁敏二极管的结构和工作原理 1结构 磁敏二极管的P型和N型电极由高阻材料制成,在P、N之间有一个较长的本征区I,本征区I的一面磨成光滑的低复合表面(为I区),另一面打毛,设置成高复合区(为r区),其目的是因为电子 空穴对易于在粗糙表面复合而消失。当通过正向电流后就会在P、I、N结之间形成电流。由此可知,磁
18、敏二极管是PIN型的。,当磁敏二极管未受到外界磁场作用时,外加正偏压(P区为正),则有大量的空穴从P区通过i区进入N区,同时也有大量电子注入 P区,这样形成电流,只有少量电子和空穴在i区复合掉。当磁敏二极管受到如下图(b)所示的外界磁场H+(正向磁场)作用时,则电子和空穴受到洛仑兹力的作用而向r区偏转,由于r区的电子和空穴复合速度比光滑面I区快,空穴和电子一旦复合就失去导电作用,意味着基区的等效电阻增大,电流减小。磁场强度越强,电子和空穴受到洛仑兹力就越大,单位时间内进入由于r区而复合的电子和空穴数量就越多,载流子减少,外电路的电流越小。,当磁敏二极管受到如右图(c)所示的外界磁场片H-(反向
19、磁场)作用时,则电子和空穴受到洛仑兹力作用而向I区偏移,由于电子、空穴复合率明显变小,i区的等效电阻减小,则外电路的电流变大。若在磁敏二极管上加反向偏压(P区的负),则仅有很微小的电流流过,并且几乎与磁场无关。因此,该器件仅能在正向偏压下工作。利用磁敏二极管的正向导通电流随磁场强度的变化而变化的特性,即可实现磁电转换。,结论:随着磁场大小和方向的变化,可产生正负输出电压的变化、特别是在较弱的磁场作用下,可获得较大输出电压。若r区和r区之外的复合能力之差越大,那么磁敏二极管的灵敏度就越高。磁敏二极管反向偏置时,则在 r区仅流过很微小的电流,显得几乎与磁场无关。因而二极管两端电压不会因受到磁场作用
20、而有任何改变。,3磁敏二极管的主要特性(1)磁电待性 在给定条件下,磁敏二极管输出的电压变化与外加磁场的关系称为磁敏二极管的磁电持性。磁敏二极管通常有单只和互补两种使用方式。它们的磁电特性如下图所示。由图可知,单只使用时,正向磁灵敏度大于反向;互补使用时,正、反向磁灵敏度曲线对称,且在弱磁场下有较好的线性。,(2)伏安特性 磁敏二极管正向偏压和通过电流的关系被称为磁敏二极管的伏安特性,如图所示。从图可知,磁敏二极管在不同磁场强度H下的作用,其伏安特性将是不一样。图(a)为锗磁敏二极管的伏安特性;(b)为硅磁敏二极管的伏安特性。图(b)表示在较宽的偏压范围内,电流变化比较平坦;当外加偏压增加到一
21、定值后,电流迅速增加、伏安持性曲线上升很快,表现出其动态电阻比较小。,(3)温度特性 一般情况下,磁敏二极管受温度影响较大,即在一定测试条件下,磁敏二极管的输出电压变化量U,或者在无磁场作用时,中点电压Um随温度变化较大。因此,在实际使用时,必须对其进行温度补偿。互补式温度补偿电路 选用两只性能相近的磁敏二极管,按相反磁极性组合,即将它们的磁敏面相对或背,向放置串接在电路中。无论温度如何变化,其分压比总保持不变,输出电压Um随温度变化而始终保持不变,这样就达到了温度补偿的目的。不仅如此,互补电路还能提高磁灵敏度。,差分式电路 如下图(c)所示。差分电路不仅能很好地实现温度补偿,提高灵敏度,还可
22、以弥补互补电路的不足。如果电路不平衡,可适当调节电阻R1和R2。全桥电路 全桥电路是将两个互补电路并联而成。和互补电路一样,其工作点只能选在小电流区。该电路在给定的磁场下,其输出电压是差分电路的两倍。由于要选择四只性能相同的磁敏二极管,会给实际使用带来一些困难。热敏电阻补偿电路 如下图(e)所示。该电路是利用热敏电阻随温度的变化,而使Rt和D的分压系数不变,从而实现温度补偿。热敏电阻补偿电路的成本略低于上述三种温度补偿电路,因此是常被采用的一种温度补偿电路。,二、磁敏三极管的结构和工作原理 1磁敏三极管的结构 在弱P型或弱N型本征半导体上用合金法或扩散法形成发射极、基极和集电极。其最大特点是基
23、区较长,基区结构类似磁敏二极管,也有高复合速率的r区和本征I区。长基区分为输运基区和复合基区。,2磁敏三极管的工作原理 当磁敏三极管未受到磁场作用时,由于基区宽度大于载流子有效扩散长度,大部分载流子通过e-I-b,形成基极电流;少数载流子输入到c极,因而基极电流大于集电极电流。,当受到正向磁场(H+)作用时,由于磁场的作用,洛仑兹力使载流子向复合区偏转,导致集电极电流显著下降;当反向磁场(H-)作用时,载流子向集电极一侧偏转,使集电极电流增大。由此可知,磁敏三极管在正、反向磁场作用下,其集电极电流出现明显变化。,3.磁敏三极管的主要特性(1)磁电特性 磁敏三极管的磁电特性是应用的基础,是主要特
24、性之一。例如,国产NPN型3BCM(锗)磁敏三极管的磁电特性,在弱磁场作用下,曲线接近一条直线,如左下图所示。(2)伏安特性 磁敏三极管的伏安特性类似普通晶体管的伏安特性曲线。下右图(a)为不受磁场作用时,磁敏三极管的伏安特性曲线;下右图(b)是磁场为1kG s,基极为3mA时,集电极电流的变化。由该图可知,磁敏三极管的电流放大倍数小于1。,(3)温度特性及其补偿 磁敏三极管对温度比较敏感,实际使用时必须采用适当的方法进行温度补偿。对于锗磁敏三极管,例如,3ACM,3BCM,其磁灵敏度的温度系数为0.8/;硅磁敏三极管(3CCM)磁灵敏度的温度系数为-0.6/。对于硅磁敏三极管可用正温度系数的
25、普通硅三极管来补偿因温度而产生的集电极电流的漂移。具体补偿电路如图(a)所示。当温度升高时,BG1管集电极电流Ic增加,导致BGm管的集电极电流也增加,从而补偿了BGm管因温度升高而导致Ic的下降。图(b)是利用锗磁敏二极管电流随温度升高而增加的这一特性使其作硅磁敏三极管的负载,当温度升高时,可以弥补硅磁敏三极管的负温度漂移系数所引起的电流下降的问题。除此之外,还可以采用两只特性一,致、磁极相反的磁敏三极管组成的差分电路,如图(c)所示,这种电路既可以提高磁灵敏度,又能实现温度补偿,它是一种行之有救的温度补偿电路。,(三)磁敏二极管和磁敏三极管的应用 由于磁敏管有效高的磁灵敏度,体积和功耗都很
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 型传感器 传感器 PPT 课件
链接地址:https://www.31ppt.com/p-5486172.html