《地球上水循环》PPT课件.ppt
《《地球上水循环》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《地球上水循环》PPT课件.ppt(160页珍藏版)》请在三一办公上搜索。
1、第二章 地球上的水循环,第一节 水循环概述(4)一、水循环的基本过程和类型 二、水循环机理与特征 三、水体的更替周期 四、水循环作用与效应第二节 水量平衡(35)一、水量平衡的相关概念 二、通用水量平衡方程 三、全球水量平衡方程第三节 蒸发(47)一、蒸发的物理机制 二、影响蒸发的因素 三、蒸发量的计算,本章结构,第四节:水汽扩散与输送(80)一、扩散现象 二、水汽输送第五节 降水(97)一、降水要素及降水特征的表示方法 二、面降水的计算 三、影响降水的因素 四、可能最大降水第六节 下渗(121)一、下渗的物理过程 二、下渗理论与经验公式 三、影响下渗的因素第七节 径流(136)一、径流的涵义
2、与表示方法 二、径流的形成过程 三、影响径流的因素,第一节 水循环概述,一、水循环的基本过程和类型1、水循环的基本过程水循环:地球上各种形态的水,在太阳辐射、地心引力等作用下,通过蒸发、水汽输送、凝结降水、下渗以及径流等环节,不断地发生相态转换和周而复始运动的过程。,你能想到的水循环/水循环现象有哪些?,可以设想这里是起点,2、水循环的类型与层次结构1)水循环的基本类型根据水循环的路径与规模差异,将全球的水循环分为大循环与小循环。A、大循环/外循环:发生于全球海洋(、大气)与陆地之间的水分交换过程。在循环过程中,水分通过蒸发与降水两个环节进行垂向交换;以水汽输送和径流的形式进行横向交换。,B、
3、小循环/内部循环:发生在海洋与大气之间(海洋小循环),或陆地与大气之间(陆地小循环)的水分交换过程。海洋小循环主要包括海面的蒸发与降水两大环节。陆地小循环:从水汽来源看,包括陆地蒸发的水汽及海洋输送的水汽;水汽的地区分布很不均匀,距离海洋越远,水汽含量越少,因而水循环强度具有从海洋向内陆深处逐步递减的趋势。,陆地小循环还分为外流区小循环与内流区小循环。外流区小循环除自身垂向的水分交换外,还有多余的水量,以地表径流以及地下径流的形式向海洋输送;与此同时,高空必然有等量的水分从海洋输送到陆地,即陆地小循环还存在与海洋之间的横向水分交换。,试举例外流区小循环和内流区小循环,习题:,陆地上内流区,其多
4、年平均降水量等于蒸发量,自成一个独立的水循环系统;地面上并不直接和海洋相沟通,水分交换以垂向为主;仅借助于大气环流,在高空与外界之间,进行一定量的水汽输送和交换。,内流区和海洋之间有联系吗?,问题,大循环:发生于全球海洋与陆地之间的水分交换过程;发生在海洋与大气之间,或陆地与大气之间的水分交换过程。,洋流算不算水循环的过程?大洋环流算不算(小的)水循环?,水循环的定义,应该算!,水循环的动力;水循环影响范围。,讨论:,2)全球水循环系统的层次结构,二、水循环机理与特征1、水循环服从质量、能量守恒定律。水循环是物质与能量的传输、储存和转化的过程。,蒸发中有什么物质和能量传递?,二、水循环机理与特
5、征1、水循环服从质量、能量守恒定律。水循环是物质与能量的传输、储存和转化的过程。在蒸发环节中,伴随液态水转化为气态水的是能量的吸收,伴随着凝结降水是潜热的释放,所以蒸发与降水就是地面向大气输送热量的过程。由降水转化为地面与地下径流的过程,则是势能转化为动能的过程。这些动能成为水流的动力,消耗在沿途的冲刷、搬运与堆积作用中,直到注入海洋才消耗殆尽。,2、太阳辐射与重力作用是水循环的基本动力,此动力不消失,水循环将永恒存在。水的物理特性,即在常温常压下固态、液态与气态的三相变化是水循环的基本前提;外部环境包括地理纬度、海陆分布、地貌形态等,它们制约着水循环的路径、规模与强度。,如果海洋环流是水循环
6、一种,那地球自转也是水循环的重要动力之一。,3、水循环广及整个水圈,并深入大气圈、岩石圈以及生物圈。在水循环过程中,其循环路径不是单一的,而是通过无数条路径实现循环和相变的,所以水循环系统是由无数不同尺度、不同规模的局部水循环所组合而成的复杂的巨系统。4、全球水循环是闭合系统,但局部水循环却是开放系统。5、地球上的水分在交替循环过程中,总是溶解并携带着某些物质一起运动,诸如溶于水中的各种化学元素、气体以及泥沙等固体杂质。但通常意义上的水文循环仅指水分循环。,三、水体的更替周期水体的更替周期是指水体在水循环过程中全部水量被交替更新一次所需要的时间,T=W/W。更替周期是在有规律地逐步轮换这一假设
7、条件下得出的平均所需时间。,T为更体周期,W为水体总储水量,W为参与水循环的活动量。,水体更替周期是反映水循环强度的重要指标,也是反映水资源可利用率的基本参数。事实上,水体的储水量并不是全部都能被利用,只是其中积极参与水循环的那部分水量,由于利用后能得到恢复,才能看作可以利用的水资源;这部分水量的多少,主要决定于水体循环更新速度和周期的长短,循环速度愈快,周期愈短,可开发的水量就愈大。,更替周期与水资源可利用率关系应该如何?,四、水循环作用与效应水文循环与地球圈层构造 地球表层系由大气圈、岩石圈、生物圈以及水圈组合而成。在这一有序的庞大层次结构中,水圈居于主导地位,正是水圈中的水,通过周流不息
8、的循环运动,积极参与了圈层之间界面活动,并且深入4大圈层内部,将它们耦合在一起。,四、水循环作用与效应水文循环与全球气候 水循环一方面受到全球气候变化尤其是大气环流活动的影响,另一方面,它又深入大气系统内部,极其深刻地制约了全球气候。,水循环是大气系统能量的主要传输、储存和转化者;,虽然太阳辐射是地球表层的根本热源,但大气得自太阳的直接辐射仅占其吸收总能量的30%,而来自地面的长波辐射占23%,地面与大气间显热交换占11%,来自蒸发的潜热输送占36%。有人计算,如果大气圈中水汽含量比现在减少一半,地球表面平均气温将下降5C。,四、水循环作用与效应水文循环与全球气候 水循环一方面受到全球气候变化
9、尤其是大气环流活动的影响,另一方面,它又深入大气系统内部,极其深刻地制约了全球气候。,水循环是大气系统能量的主要传输、储存和转化者;水循环通过对地表太阳辐射能的重新分配,使不同纬度热量收支不平衡的矛盾得到缓解;,问题:如果没有水循环,赤道和两极地区温度会怎么变化?,如果没有热平流调节高低纬度热量不均,赤道附近会比现在热10C,两极地区会比现在冷20C。,如果没有水循环调节,气温在赤道附近40C,两极地区-15C。,四、水循环作用与效应水文循环与全球气候 水循环一方面受到全球气候变化尤其是大气环流活动的影响,另一方面,它又深入大气系统内部,极其深刻地制约了全球气候。,水循环是大气系统能量的主要传
10、输、储存和转化者;水循环通过对地表太阳辐射能的重新分配,使不同纬度热量收支不平衡的矛盾得到缓解;水循环的强弱及其路径还直接影响到各地的天气过程。,如墨西哥湾流与北大西洋西风漂流使5570N之间的北欧地区比同纬度的大西洋西岸高16-20C。,如墨西哥湾流与北大西洋西风漂流使5570N之间的北欧地区比同纬度的大西洋西岸高16-20C。,四、水循环作用与效应水文循环与地貌形态和地壳运动 地壳构造运动奠定了全球海陆分布及陆地表面高山、深谷、盆地和平原等地表形态的基本轮廓,而水循环过程中的各种物理和化学侵蚀、搬运和沉积过程则在地质构造的基础上重新塑造了全球地貌形态。,珠穆朗玛峰,冰川作用,科罗拉多大峡谷
11、,流水作用,水循环不仅影响地表形态,而且影响到地壳表层内应力的平衡,是触发地震甚至影响地壳运动的重要原因。,四、水循环作用与效应水文循环与生态平衡 水是生命之源,又是生命有机体的基本组成物质水循环的强度及其时空变化还制约一个地区的生态环境平衡或失调的关键,海南岛西部属于典型的热带半干旱气候区,是我国惟一的热带稀树干草原沙漠化地区,降水影响海南岛东西植被差异,四、水循环作用与效应水文循环与水资源开发利用 水是廉价、清洁的能源如果自然界不存在水循环,那水资源亦不能再生,无法持续利用。,南极Adelaide岛冰川退缩(从1986到2001,15年间)。,冰川退缩不只是发生在高山,四、水循环作用与效应
12、水文循环与水文现象和水文学科的发展 水循环是地球上一切水文现象的根源研究地球上的水文循环,是认识和掌握自然界错综复杂的水文现象的一把钥匙水循环与水量平衡的研究引导了以往水文学科的发展,亦将指导水文学的未来,第二节 水量平衡,一、水量平衡的相关概念1、水量平衡及水量平衡方程水量平衡:任意选择的区域或水体,在任意时段内,其收入与支出水量之间的差额必等于该时段内某区域或水体蓄水的变化量。水量平衡是地球上水循环持续不断进行下去的基本前提。水量平衡方程是水循环的数学表达式,根据不同类型的水循环,可建立不同的水量平衡方程。如通用、全球、海洋、陆地、流域水量平衡方程等。,水量平衡研究的意义通过水量平衡研究,
13、可以定量地揭示水循环过程与全球地理环境、自然生态系统之间的联系、相互制约的关系,揭示水循环过程对人类的影响及人类活动对水循环的消极影响和积极控制作用;水量平衡是研究水循环系统内在结构和运行机制、分析系统内蒸发、降水及径流等各环节之间内在联系、揭示自然界水文过程基本规律的主要方法水量平衡是分析水资源现状评价与供需预测研究工作的核心。在流域规划、水资源工程系统规划与设计中同样离不开水量平衡工作。,二、通用水量平衡方程水量平衡方程式的通式:I是水量的收入项,Q为水量的支出项,ds为研究时段内区域或水体内的蓄水变化量;分别是计算时段t内的水量收入、支出与蓄水变化量。,以陆地上任一地区为研究对象,沿该地
14、区边界作一垂直柱体,以地表作为柱体的上界,以地面下某一深度为柱体的下界(以界面上不发生水分垂直交换的深度为准),则水量平衡方程式可写做为:P为时段内降水量;E1、E2分别为时段内水汽凝结量和蒸发量;R表、R表分别为时段内地表流入与流出的水量;R地下、R地下分别为时段内地下流入与流出的水量;S1、S2分别为时段内始末蓄水量。q为时段内工农业以及生活净用水量;,令E=E2E1为时段内净蒸发量;s=S2S1为时段内蓄水变化量,则上述水量平衡方程式可以变化为:此式为通用水量平衡方程式,其简繁程度与研究对象及时段长短有关。如对于多年平均来说,s0,可忽略不计;但对于短时段而言,蓄水变化量s非但不可忽略,
15、而且必须细分为地表水体蓄水变化量、土壤蓄水变化量、地下水蓄水变化量等。,三、全球水量平衡方程全球水量平衡系由海洋和陆地水量平衡联合组成。1、海洋水量平衡方程式以全球海洋为研究对象,则任意时段内的水量平衡方程式为:多年平均状态下s海0,所以即在多年平均状态下,整个海洋的降水量加上入海径流量与海面水蒸发量处于动态平衡状态。对于各大洋来说,降水量与入海径流量之和并非等于蒸发量?,2、陆地水量平衡方程式陆地上水循环可分为外流区与内流区,其水量平衡方程式可分为外流区和内流区水量平衡方程。1)外流区水量平衡方程对于外流区来说,任意时段的水量平衡方程为:P外E外R地表R地下=s外对于多年平均而言s外0,并以
16、R=R地表R地下,则有P外、E外、R地表、R地下和s外分别为外流区任意时段内降水量、蒸发量、入海的地表与地下径流量和蓄水量变化;,2)内流区水量平衡内流区水循环基本上呈闭合状态,除了上空存在与外界水汽发生交换外,内流区的降水最终全部转化为水汽,没有水量入海。因此在多年平均情况下的水量平衡方程为:分别为内流区多年平均降水量、蒸发量。,3)陆地水量平衡方程陆地水量平衡方程是由外流区与内流区水量平衡方程的组合:由于,全球陆地平均降水量P 陆为800mm,平均蒸发E 陆为485mm,两者之差为315mm,它与入海径流量R 相当。,非洲为什么干旱?,全球各大洲水量收支,3、全球水量平衡方程式全球水量平衡
17、方程式是海洋水量平衡方程式与陆地水量平衡方程式的组合:海洋水量平衡方程式:陆地水量平衡方程式:P 海P 陆=E 陆E 海即海洋与陆地的多年平均降水量等于海洋与陆地多年平均蒸发量,即在水循环过程中,全球总水量不变,但各种水体之间相对数量却是不断变化的。,全球各种水体动态变化及引起的海平面变化,第三节 蒸发,蒸发是水由液态转变为气体状态的过程,是海洋和陆地上水返回大气的唯一途径。蒸发同时包含水和热的交换过程。蒸发因蒸发面的不同,可分为水面蒸发、土壤蒸发与植物散发等;土壤蒸发和植物散发合称为陆面蒸发;流域上各部分蒸发和散发的总和称为流域总蒸发。,流域总蒸发可能包含水面蒸发、土壤蒸发与植物散发等,一、
18、蒸发的物理机制1、水面蒸发水面蒸发是在充分供水条件下的蒸发。分子运动角度:水分蒸发是发生在水体与大气界面上的水分子交换现象。包括水分子从水面逸出和水汽分子返回液面。通常说的蒸发量E,即是从蒸发面跃出的水量和返回蒸发面的水量之差值,称为有效蒸发量。,能态角度:在液态水和水汽两相共存的系统中,每个水分子都具有一定的动能,逸出水面的首先是动能大的分子,而温度是物质分子运动平均动能的反映,因此,温度越高,水分子动能越大,自水面逸出的水分子越多。由于跃入空气中的分子能量大,蒸发面上水分子的平均动能变小,水体温度因此降低。蒸发伴随着热量的吸收,从液态水变为气态时吸收的热量为蒸发潜热,以L表示,其值与蒸发面
19、的温度T有以下的关系:L=24912.177T(J/g),为什么说蒸发是物质和能量的转换?能量的转换是怎样的?,问题:,2、土壤蒸发土壤蒸发是发生在土壤孔隙中的水的蒸发现象。与水面蒸发相比较,不仅蒸发面的性质不同,更重要的是供水条件的差异。土壤水在汽化过程中,除了要克服水分子之间的内聚力外,还要克服土壤颗粒对水分子的吸附力。(与溶液蒸发相似),土壤蒸发是土壤失去水分的干化过程,随着蒸发过程的持续进行,土壤中的含水量会逐渐减少,因而其供水条件越来越差,土壤的实际蒸发量也随之降低。根据土壤供水条件的差别以及蒸发率的变化,可将土壤的干化过程划分为三个阶段:,1)定常蒸发率阶段:在充分供水条件下,水通
20、过毛管作用,源源不断地输送到土壤表层供给蒸发,蒸发快速进行,蒸发率相对稳定;蒸发量等于或近似于相同气象条件下的水面蒸发;此阶段土壤蒸发主要受气象条件的影响(如风速、饱和差)。,裸露土壤蒸发过程示意图,2)蒸发率下降阶段当蒸发达到某一临界值W田(约为土壤田间持水量),土壤的供水能力不能满足蒸发需要,蒸发率减小并进入明显下降阶段。由于供水不足,毛管水达不到地表,土壤水主要以薄膜水的形式,由水膜厚的地方向水膜薄的地方运动。蒸发量的大小主要取决于土壤含水量,气象因素处于次要地位。,毛管上升水,毛管悬着水,悬着水带,3)蒸发微弱阶段当蒸发达到第二临界值W凋(凋萎系数,其值相当于植物无法从土壤中吸水而开始
21、凋谢枯死时土壤含水量),土壤蒸发便进入蒸发率微弱阶段。土壤水由底层向表面的薄膜运动基本停止,土壤液态供水中断,仅靠下层水汽向外扩散,此时土壤蒸发在较深的土层中进行。,汽化扩散速度主要与上下层水汽压梯度及水汽所通过的路径长短和弯曲程度有关,并随汽化层的不断向下延伸,蒸发越来越弱。,3、植物散发植物散发又称植物蒸腾,其过程大致是:植物根系从土壤中吸收水分后,经由根、茎,叶柄和叶脉输送到叶面,并为叶肉细胞所吸收,其中除一小部分留在植物体内,90%以上的水分在叶片的气腔中汽化而向大气散逸。,3、植物散发由于植物的散发主要是通过叶片上的气孔进行的,而气孔大小则随着外界条件改变而变化,从而控制植物散发的强
22、弱。白天,气孔开启度大,水散发强;夜晚气孔关闭,水散发力弱。,二、影响蒸发的因素1、供水条件通常将蒸发面的供水条件分为充分供水和不充分供水:将水面蒸发以及含水量达到田间持水量以上的土壤蒸发,称为充分供水条件下的蒸发;将土壤含水量小于田间持水量情况下的蒸发为不充分供水条件下的蒸发。,将处在特定气象环境中,具有充分供水条件的可能达到的最大蒸发量称为蒸发能力/潜在蒸发量/最大可能蒸发量。对于水面蒸发,始终是充分供水条件下的蒸发,因此可以将相同气象条件下的自由水面蒸发,视为区域蒸发能力。,蒸发能力的表示方法:由于在充分供水条件下,蒸发面与大气之间的显热交换很小,可以忽略不计,因而辐射平衡的净收入基本上
23、消耗于蒸发,蒸发能力可以表示为:Ep为蒸发能力,L为蒸发潜热,R为辐射平衡值,t为时段长。对于特定的蒸发面,其蒸发能力并不是常数,受到太阳辐射、温度、饱和差以及风速等条件的影响。实际情况下的蒸发可能等于蒸发能力,可能小于蒸发能力。,2、影响蒸发的动力与热力因素1)动力学因素水汽分子的垂向扩散蒸发面上空的水汽分子,在垂向分布上极不均匀,越近水面层,水汽含量越大,因而存在水汽含量垂向梯度和水汽压梯度,水汽分子有沿着梯度方向运行扩散的趋势,垂向梯度愈显著,蒸发面上的扩散作用愈强烈。,2、影响蒸发的动力与热力因素1)动力学因素大气垂向对流运动垂向对流是指由蒸发面和空中的温差所引起,运动的结果是蒸发面的
24、水汽不断送入空中,使近蒸发面的水汽含量变小,饱和差扩大,从而加速了蒸发面的蒸发。,大气中的水平运动和湍流扩散在近地层中的气流,既有规则的水平运动,也有不规则的湍流运动。运动不仅影响水汽的水平和垂向交换过程,影响蒸发面上的水汽分布,而且也影响温度和饱和差,进而影响蒸发面的蒸发速度。,2)热力学因素太阳辐射:太阳辐射是水面、土壤与植物体热量的主要来源。太阳辐射强烈蒸发面温度升高水分子动能增加;饱和水汽压增大饱和差增大蒸发速度加大。太阳辐射强度随纬度而变化,并有强烈的季节变化和日变化,各种蒸发面的蒸发强度,也表现出强烈的时空变化。,对于植物散发来说,太阳辐射和温度的高低,还可通过影响植物体的生理过程
25、而间接影响其散发。当温度 1.5,散发随温度升高而递增;当温度40 时,叶面的气孔失去调节能力,气孔全部打开,散发量激增,但植物一旦耗水过多,将会枯萎。,平流时的热量交换主要指大气中冷暖气团运行过程中发生的与下垫面之间的热量交换。这种交换过程具有强度大,持续时间较短,对蒸发的影响比较大。,蒸发体自身的特性有关 水体的含盐度、浑浊度以及水深的不同,会导致水体的比热、热容量的差异,因而在同样的太阳辐射条件下,其热量变化和蒸发速度也不相同。,如矿化度10克/升,透明度1米,浓度为克/厘米3的污水的蒸发量仅为淡水蒸发量的75%.,3、土壤特性和土壤含水量的影响1)对土壤蒸发的影响不同质地的土壤,其含水
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地球上水循环 地球 上水 循环 PPT 课件
链接地址:https://www.31ppt.com/p-5485558.html